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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 13
Topology of R I

Tuesday 1 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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THINKING ABOUT 

GRADUATE SCHOOL? 
JOIN US TO FIND OUT MORE AT THE GRAD 

INFO SESSION!  

 

WHEN: THURSDAY OCTOBER 3, 2019 

TIME: 5:30PM – 7:00PM  

WHERE: HH/305 AND THE MATH CAFÉ 

Matheus Grasselli will give general advice on 

applying to grad school. 
 

Shui Feng will talk about graduate programs 

particular to statistics. 
 

Tom Hurd will talk about graduate opportunities in 

financial math including PhiMac. 
 

Miroslav Lovric will give tips about applying to 

teachers’ college.  
 

PIZZA will be served! See you there!  

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is posted, but more problems will be added in a
few days. Due Tuesday 22 October 2019 at 2:25pm via
crowdmark.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Topology of R

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intervals

a ba ba ba ba ba c dc dc dc dc dc e fe fe fe fe fe

Open interval:
(a, b) = {x : a < x < b}

Closed interval:
[c, d ] = {x : c ≤ x ≤ d}

Half-open interval:

(e, f ] = {x : e < x ≤ f }

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Interior point

a ba ba ba ba ba x − c x x + cx − c x x + cx − c x x + cx − c x

Definition (Interior point)
If E ⊆ R then x is an interior point of E if x lies in an open
interval that is contained in E , i.e., ∃c > 0 such that
(x − c, x + c) ⊂ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Interior point examples

Set E Interior points?

(−1, 1) Every point

[0, 1] Every point except the endpoints

N @

R Every point

Q @

(−1, 1) ∪ [0, 1] Every point except 1

(−1, 1) \ {1
2} Every point

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Neighbourhood

a ba ba ba ba ba xxxxxxxxxxx

Definition (Neighbourhood)
A neighbourhood of a point x ∈ R is an open interval containing
x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Deleted neighbourhood

a ba ba ba ba ba xxxxxxxxxxx

Definition (Deleted neighbourhood)
A deleted neighbourhood of a point x ∈ R is a set formed by
removing x from a neighbourhood of x .

(a, b) \ {x}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Isolated point

a1 b1a1 b1a1 b1a1 b1a1 b1a1 a2 b2a2 b2a2 b2a2 b2a2 b2a2 x − c x x + cx − c x x + cx − c x x + cx − c x

E = (a1, b1) ∪ [a2, b2) ∪ {x}

Definition (Isolated point)
If x ∈ E ⊆ R then x is an isolated point of E if there is a
neighbourhood of x for which the only point in E is x itself, i.e.,
∃c > 0 such that (x − c, x + c) ∩ E = {x}.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 13: Isolated points

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Isolated point examples

Set E Isolated points?

(−1, 1)

[0, 1]

N

R

Q

(−1, 1) ∪ [0, 1]

(−1, 1) \ {1
2}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Isolated point examples

Set E Isolated points?

(−1, 1) @

[0, 1] @

N Every point

R @

Q @

(−1, 1) ∪ [0, 1] @

(−1, 1) \ {1
2} @

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Accumulation point

0 0.25 0.5 0.75 1

E =
{

1− 1
n : n ∈ N

}
Definition (Accumulation Point or Limit Point)
If E ⊆ R then x is an accumulation point or limit point of E if
every neighbourhood of x contains infinitely many points of E ,

i.e., ∀c > 0 (x − c, x + c) ∩ (E \ {x}) 6= ∅ .

Notes:
It is possible but not necessary that x ∈ E .
The shorthand condition is equivalent to saying that every
deleted neighbourhood of x contains at least one point of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 13: Accumulation points

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Accumulation point examples

Set E Accumulation points?

(−1, 1)

[0, 1]

N

R

Q

(−1, 1) ∪ [0, 1]

(−1, 1) \ {1
2}{

1− 1
n : n ∈ N

}
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Accumulation point examples

Set E Accumulation points?

(−1, 1) [−1, 1]

[0, 1] [0, 1]

N @

R R

Q R

(−1, 1) ∪ [0, 1] [−1, 1]

(−1, 1) \ {1
2} [−1, 1]{

1− 1
n : n ∈ N

}
{1}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫
M

dω =
∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 14
Topology of R II

Thursday 3 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 14: poll on polls

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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THINKING ABOUT 

GRADUATE SCHOOL? 
JOIN US TO FIND OUT MORE AT THE GRAD 

INFO SESSION!  

 

WHEN: THURSDAY OCTOBER 3, 2019 

TIME: 5:30PM – 7:00PM  

WHERE: HH/305 AND THE MATH CAFÉ 

Matheus Grasselli will give general advice on 

applying to grad school. 
 

Shui Feng will talk about graduate programs 

particular to statistics. 
 

Tom Hurd will talk about graduate opportunities in 

financial math including PhiMac. 
 

Miroslav Lovric will give tips about applying to 

teachers’ college.  
 

PIZZA will be served! See you there!  

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is posted, but more problems will be added in a
few days. Due Tuesday 22 October 2019 at 2:25pm via
crowdmark.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Topological concepts covered so far

Interval

Neighbourhood

Deleted neighbourhood

Interior point

Isolated point

Accumulation point

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Boundary point

Definition (Boundary Point)
If E ⊆ R then x is a boundary point of E if every neighbourhood
of x contains at least one point of E and at least one point not in
E , i.e.,

∀c > 0 (x − c, x + c) ∩ E 6= ∅
∧ (x − c, x + c) ∩ (R \ E ) 6= ∅ .

Note: It is possible but not necessary that x ∈ E .

Definition (Boundary)
If E ⊆ R then the boundary of E , denoted ∂E , is the set of all
boundary points of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Boundary point examples

Set E Boundary points?

(−1, 1) {−1, 1}
[0, 1] {0, 1}
N N

R @

Q R

(−1, 1) ∪ [0, 1] {−1, 1}
(−1, 1) \ {1

2} {−1, 1
2 , 1}{

1− 1
n : n ∈ N

} {
1− 1

n : n ∈ N
}
∪ {1}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Closed set

Definition (Closed set)
A set E ⊆ R is closed if it contains all of its accumulation points.

Definition (Closure of a set)
If E ⊆ R and E ′ is the set of accumulation points of E then
E = E ∪ E ′ is the closure of E .

Note: If the set E has no accumulation points, then E is closed
because there are no accumulation points to check.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Open set

Definition (Open set)
A set E ⊆ R is open if every point of E is an interior point.

Definition (Interior of a set)
If E ⊆ R then the interior of E , denoted int(E ) or E ◦, is the set of
all interior points of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I



Topology of R II Open sets 28/67

Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 14: Open or Closed

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Examples

Set E Closed? Open? E E ◦ ∂E

(−1, 1)

[0, 1]

N

R

∅

Q

(−1, 1) ∪ [0, 1]

(−1, 1) \ {1
2}{

1− 1
n : n ∈ N

}
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Examples

Set E Closed? Open? E E ◦ ∂E

(−1, 1) NO YES [−1, 1] E {−1, 1}
[0, 1] YES NO E (0, 1) {0, 1}
N YES NO N ∅ N

R YES YES R R ∅

∅ YES YES ∅ ∅ ∅

Q NO NO R ∅ R

(−1, 1) ∪ [0, 1] NO NO [−1, 1] (−1, 1) {−1, 1}
(−1, 1) \ {1

2} NO YES [−1, 1] E {−1, 1
2 , 1}{

1− 1
n : n ∈ N

}
NO NO E ∪ {1} ∅ E ∪ {1}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫
M

dω =
∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 15
Topology of R III

Friday 4 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is posted, but more problems will be added over
the weekend. Due Tuesday 22 October 2019 at 2:25pm
via crowdmark.

Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/jhe-264
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Topological concepts covered so far

Interval

Neighbourhood

Deleted neighbourhood

Interior point

Isolated point

Accumulation point

Boundary point

Boundary

Closed set

Closure

Open set

Interior

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 15: The most general type of open
set

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Component intervals of open sets

What does the most general open set look like?

Theorem (Component intervals)
If G is an open subset of R and G 6= ∅ then there is a unique
(possibly finite) sequence of disjoint open intervals {(an, bn)} such
that

G = (a1, b1) ∪ (a2, b2) ∪ · · · ∪ (an, bn) ∪ · · · ,

i.e., G =
∞⋃

n=1
(an, bn) .

The open intervals (an, bn) are said to be the component
intervals of G.

(Textbook (TBB) Theorem 4.15, p. 231)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Component intervals of open sets
Main ideas of proof of component intervals theorem:

x ∈ G =⇒ x is an interior point of G =⇒
some neighbourhood of x is contained in G ,
i.e., ∃c > 0 such that (x − c, x + c) ⊆ G
∃ a largest neighbourhood of x that is contained in G : this
“component of G” is Ix = (α, β), where

α = inf{a : (a, x ] ⊂ G}, β = sup{b : [x , b) ⊂ G}

Ix contains a rational number, i.e., ∃r ∈ Ix ∩Q

∴ We can index all the intervals Ix by rational numbers
∴ There are are most countably many intervals that make up
G (i.e., G is the union of a sequence of intervals)
We can choose a disjoint subsequence of these intervals whose
union is all of G (see proof in textbook for details).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Open vs. Closed Sets

Definition (Complement of a set of real numbers)
If E ⊆ R then the complement of E is the set

E c = {x ∈ R : x /∈ E} .

Theorem (Open vs. Closed)
If E ⊆ R then E is open iff E c is closed.

(Textbook (TBB) Theorem 4.16)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Open vs. Closed Sets

Theorem (Properties of open sets of real numbers)

1 The sets R and ∅ are open.
2 Any intersection of a finite number of open sets is open.
3 Any union of an arbitrary collection of open sets is open.
4 The complement of an open set is closed.

(Textbook (TBB) Theorem 4.17)

Theorem (Properties of closed sets of real numbers)

1 The sets R and ∅ are closed.
2 Any union of a finite number of closed sets is closed.
3 Any intersection of an arbitrary collection of closed sets is closed.
4 The complement of a closed set is open.

(Textbook (TBB) Theorem 4.18)
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

Definition (Bounded function)
A real-valued function f is bounded on the set E if there exists
M > 0 such that |f (x)| ≤ M for all x ∈ E .

(i.e., the function f is bounded on E iff {f (x) : x ∈ E} is a bounded set.)

Note: This is a global property because there is a single bound M
associated with the entire set E .

Example
The function f (x) = 1/(1 + x2) is bounded on R. e.g., M = 1.

-3 -2 -1 0 1 2 3

0.2
0.4
0.6
0.8
1.0

f(x
)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

f (x) = 1
x

f (x) = 1/x is not bounded on the interval E = (0, 1).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

x − δx x x + δx

f (x) = 1
x

f (x) = 1/x is locally bounded on the interval E = (0, 1),
i.e., ∀x ∈ E , ∃δx ,Mx > 0 )– |f (t)| ≤ Mx ∀t ∈ (x − δx , x + δx ).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

Definition (Locally bounded at a point)
A real-valued function f is locally bounded at the point x if there
is a neighbourhood of x in which f is bounded, i.e., there exists
δx > 0 and Mx > 0 such that |f (t)| ≤ Mx for all
t ∈ (x − δx , x + δx ).

Definition (Locally bounded on a set)
A real-valued function f is locally bounded on the set E if f is
locally bounded at each point x ∈ E .

Note: The size of the neighbourhood (δx ) and the local bound
(Mx ) depend on the point x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

Example (Function that is not even locally bounded)
Give an example of a function that is defined on the interval (0, 1)
but is not locally bounded on (0, 1).

(solution on board)

Example (Function that is a mess near 0)
Give an example of a function f (x) that is defined everywhere, yet
in any neighbourhood of the origin there are infinitely many points
at which f is not locally bounded.

(solution on board)

Extra Challenge Problem: Is there a function f : R→ R that is not
locally bounded anywhere?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫
M

dω =
∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 16
Topology of R IV

Tuesday 8 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is posted (and complete).
Due Tuesday 22 October 2019 at 2:25pm via crowdmark.
Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/jhe-264
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Local vs. Global properties

Example (Function that is not even locally bounded)
Give an example of a function that is defined on the interval (0, 1)
but is not locally bounded on (0, 1).

(solution on board)

Example (Function that is a mess near 0)
Give an example of a function f (x) that is defined everywhere, yet
in any neighbourhood of the origin there are infinitely many points
at which f is not locally bounded.

(solution on board)

Extra Challenge Problem: Is there a function f : R→ R that is not
locally bounded anywhere?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 16: Local boundedness

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Local vs. Global properties

What condition(s) rule out such pathological behaviour?

When does a property holding locally (near any given point in
a set) imply that it holds globally (for the set as a whole)?

For example: What condition(s) must a set E ⊆ R satisfy in
order that a function f that is locally bounded on E is
necessarily bounded on E?

We will see that the condition we are seeking is that the set E
must be “compact” . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Recall the Bolzano-Weierstrass theorem, which we proved when
investigating sequences of real numbers:

Theorem (Bolzano-Weierstrass theorem for sequences)
Every bounded sequence in R contains a convergent subsequence.

For any set of real numbers, we define:

Definition (Bolzano-Weierstrass property)
A set E ⊆ R is said to have the Bolzano-Weierstrass property iff
any sequence of points chosen from E has a subsequence that
converges to a point in E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Theorem (Bolzano-Weierstrass theorem for sets)
A set E ⊆ R has the Bolzano-Weierstrass property iff E is closed
and bounded.

(Textbook (TBB) Theorem 4.21, p. 241)

Proof of ⇐= .
Suppose E is closed and bounded. Let {xn} be a sequence in E .
Since E is bounded, the usual Bolzano-Weierstrass theorem implies
that there is a subsequence {xnk} that converges. If {xnk} is
eventually constant, then its limit is a point in E , so we’re done.
Otherwise, {xnk} must converge to an accumulation point of E .
But E is closed, so it contains all its accumulation points,
including the limit of {xnk}. Thus, again, we have a subsequence
of {xn} that converges to a point in E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Theorem (Bolzano-Weierstrass theorem for sets)
A set E ⊆ R has the Bolzano-Weierstrass property iff E is closed
and bounded.
Proof of =⇒ (Part 1)
Let’s prove the contrapositive, i.e., If E is either not bounded or not
closed then E does not have the Bolzano-Weierstrass property. Suppose
E is unbounded. In particular, suppose E is not bounded above (the
argument is similar if E is not bounded below). We will construct a
sequence in E that has no convergent subsequence. Pick a point x1 ∈ E
such that x1 > 1 (which is possible because E is not bounded above).
Also, since E is not bounded above, we can find x2 ∈ E such that
x2 > x1 + 1 > 2. More generally, given xk ∈ E we can find xk+1 ∈ E such
that xk+1 > xk + 1 > k + 1. The sequence {xn} constructed in this way
is increasing and diverges to ∞ (since xn > n for all n ∈ N). Moreover,
this is true of any subsequence of {xn}. ∴ E does not have the
Bolzano-Weierstrass property.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Theorem (Bolzano-Weierstrass theorem for sets)
A set E ⊆ R has the Bolzano-Weierstrass property iff E is closed
and bounded.

Proof of =⇒ (Part 2)
Now suppose E is not closed. Then there must be a sequence
{xn} in E such that {xn} converges to a point not in E . If E has
the Bolzano-Weierstrass property, then {xn} has a subsequence
that converges to a point in E . But every subsequence of a
convergent sequence must converge to the same point as the full
sequence, and the full sequence converges to a point not in E !
Thus, if E is not closed then it does not have the
Bolzano-Weierstrass property.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Theorem (Bolzano-Weierstrass theorem for sets)
A set E ⊆ R has the Bolzano-Weierstrass property iff E is closed
and bounded.
Notes:

Why do we need both closed and bounded? Why didn’t we need
closed in the original version of the Bolzano-Weierstrass theorem
(for sequences)?

Because we didn’t require the limit of the convergent
subsequence to be in the set!

The Bolzano-Weierstrass theorem for sets implies that “If E ⊆ R is
bounded then its closure E has the Bolzano-Weierstrass property”.

The original Bolzano-Weierstrass theorem for sequences is a
special case of this statement because any convergent
sequence together with its limit is a closed set.

We assumed implicitly in the proof that E 6= ∅. Was that OK?
Instructor: David Earn Mathematics 3A03 Real Analysis I



Topology of R IV 54/67

Compactness

Definition (Open Cover)
Let E ⊆ R and let U be a family of open intervals. If for every
x ∈ E there exists at least one interval U ∈ U such that x ∈ U,
i.e.,

E ⊆
⋃
{U : U ∈ U} ,

then U is called an open cover of E .

Example (Open covers of N)
Give examples of open covers of N.

U =
{(

n − 1
2 , n + 1

2

)
: n = 1, 2, . . .

}
U = {(0,∞)}
U = {(0,∞), R, (π, 27)}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Example (Open covers of { 1
n : n ∈ N})

U = {(0, 1), (0, 2), R, (π, 27)}
U = {(0, 2)}
U =

{(
1
n ,

1
n + 3

4

)
: n = 1, 2, . . .

}

Example (Open covers of [0, 1])

U = {(−2, 2)}
U = {(−1

2 ,
1
2), (0, 2)}

U =
{(

1
n , 2

)
: n = 1, 2, . . .

}
∪
{(
− 1

2 ,
1
2

)}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 16: Open covers

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 17
Topology of R V

Thursday 10 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is posted (and complete).
Due Tuesday 22 October 2019 at 2:25pm via crowdmark.
Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)
Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
Location: MDCL 1105

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/jhe-264
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Compactness

Definition (Heine-Borel Property)
A set E ⊆ R is said to have the Heine-Borel property if every
open cover of E can be reduced to a finite subcover. That is, if U
is an open cover of E , then there exists a finite subfamily
{U1,U2, . . . ,Un} ⊆ U , such that E ⊆ U1 ∪ U2 ∪ · · · ∪ Un.

When does any open cover of a set E have a finite subcover?

Theorem (Heine-Borel Theorem)
A set E ⊆ R has the Heine-Borel property iff E is both closed and
bounded.

(Textbook (TBB) pp. 249–250)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Definition (Compact Set)
A set E ⊆ R is said to be compact if it has any of the following
equivalent properties:

1 E is closed and bounded.
2 E has the Bolzano-Weierstrass property.
3 E has the Heine-Borel property.

Note: In spaces other than R, these three properties are not
necessarily equivalent. Usually the Heine-Borel property is taken as
the definition of compactness.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Example
Prove that the interval (0, 1] is not compact by showing that it is
not closed or not bounded.

(solution on board)

Example
Prove that the interval (0, 1] is not compact by showing that it
does not have the Bolzano-Weierstrass property.

(solution on board)

Example
Prove that the interval (0, 1] is not compact by showing that it
does not have the Heine-Borel property.

(solution on board)
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 17: Compactness

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Compactness
Classic non-trivial compactness argument:
Theorem (Compact =⇒ bounded if locally bounded)
Let E be a compact subset of R. If f : E → R is locally bounded
on E then f is bounded on E.

Proof via Bolzano-Weierstrass.
E satisfies the Bolzano-Weierstrass property, i.e., any sequence in E has
a subsequence that converges to a point in E. Suppose, in order to derive
a contradiction, that f is not bounded on E . Then there is some
sequence {xn} in E such that |f (xn)| > n (otherwise |f (xn)| ≤ N for some
N ∈ N, so N would be a bound). By the Bolzano-Weierstrass property,
{xn} has a subsequence {xnk} such that xnk → L ∈ E . Since f is locally
bounded, there exist δ > 0 and M > 0 and such that |f (x)| ≤ M for all
x ∈ (L− δ, L + δ). But xnk → L, so for all sufficiently large k,
xnk ∈ (L− δ, L + δ). Yet for sufficiently large k, |f (xnk )| > nk ≥ k > M.
⇒⇐. Hence f must, in fact, be bounded on E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Theorem (Compact =⇒ bounded if locally bounded)
Let E be a compact subset of R. If f : E → R is locally bounded
on E then f is bounded on E.

Proof via Heine-Borel.
Since f is locally bounded, each x ∈ E lies in some open interval
Ux such that |f (t)| ≤ Mx for all t ∈ Ux . The collection
U = {Ux : x ∈ E} is an open cover of E . But E satisfies the
Heine-Borel property, so U contains a finite subcover, say
{Ux1 , . . . ,Uxn}. We can therefore find a bound for f on all of E .
Let M = max{Mx1 , . . . ,Mxn}. Then |f (x)| ≤ M for all x ∈ E .

Proof via Heine-Borel is much easier!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Theorem (Compact =⇒ bounded if locally bounded)
Let E be a compact subset of R. If f : E → R is locally bounded
on E then f is bounded on E.

Example (Converse of above theorem)
Let E ⊆ R. If every function f : E → R that is locally bounded on
E is bounded on E , then E is compact.

Note: Contrapositive of converse is: If E ⊆ R is not compact then
∃f : E → R )– f is locally bounded on E but not bounded on E . •

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Complements and Closures problem

Example
How many distinct sets can be obtained from E = [0, 1] by
applying the complement and closure operations?
Consider this sequence of sets: E1 = [0, 1],
E2 = E c

1 = (−∞, 0) ∪ (1,∞), E3 = E2 = (−∞, 0] ∪ [1,∞),
E4 = E c

3 = (0, 1), E5 = E4 = E1.
Is the answer 4 for any set E ⊆ R?

Extra Challenge Problem
If E ⊆ R, how many distinct sets can be obtained by taking
complements or closures of E and its successors? Put another way,
if {En} is a sequence of sets produced by taking the complement
or closure of the previous set, how many distinct sets can such a
sequence contain? If the answer is finite, find a set E that
generates the maximum number in this way.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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