14 Topology of \mathbb{R} I

15 Topology of ℝ II

16 Topology of ℝ III

$$\begin{array}{l} \text{Mathematics} \\ \text{and Statistics} \\ \int_{M} d\omega = \int_{\partial M} \omega \end{array}$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

 $\begin{array}{c} \text{Lecture 14} \\ \text{Topology of } \mathbb{R} \text{ I} \\ \text{Monday 10 February 2025} \end{array}$

Announcements

- Solutions to Assignment 2 have been reposted after correcting some errors (thanks to Kieran for spotting these).
 - There were typos in Q2(b) and Q4.
 - **Q**3 was incomplete because I assumed f(x) was positive.
- Assignment 3 is posted on the course web site. Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I reposted the slides for Lecture 13. Slide 79 now contains a sequence of hints for proving π is irrational.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

Topology of $\mathbb R$

Intervals

Open interval:

$$(a, b) = \{x : a < x < b\}$$

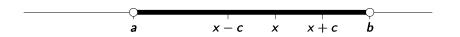
Closed interval:

$$[c,d] = \{x : c \le x \le d\}$$

Half-open interval:

$$(e, f] = \{x : e < x \le f\}$$

Interior point



Definition (Interior point)

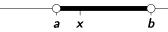
If $E \subseteq \mathbb{R}$ then x is an *interior point* of E if x lies in an open interval that is contained in E, *i.e.*,

$$\exists c > 0$$
) $(x - c, x + c) \subset E$.

Interior point examples

Set E	Interior points?
(-1, 1)	
[0, 1]	
\mathbb{N}	
\mathbb{R}	
Q	
$(-1,1) \cup [0,1]$	
$(-1,1)\setminus\{rac{1}{2}\}$	

Neighbourhood



Definition (Neighbourhood)

A *neighbourhood* of a point $x \in \mathbb{R}$ is an open interval containing x.

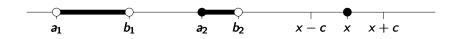
Deleted neighbourhood

$$(a,b)\setminus\{x\}$$

Definition (Deleted neighbourhood)

A *deleted neighbourhood* of a point $x \in \mathbb{R}$ is a set formed by removing x from a neighbourhood of x.

Isolated point



$$E = (a_1, b_1) \cup [a_2, b_2) \cup \{x\}$$

Definition (Isolated point)

If $x \in E \subseteq \mathbb{R}$ then x is an *isolated point* of E if there is a neighbourhood of x for which the only point in E is x itself, *i.e.*,

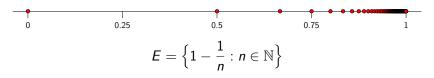
$$\exists c > 0$$
) $(x - c, x + c) \cap E = \{x\}.$

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Isolated points**
- Submit.

Isolated point examples

Set E	Isolated points?
(-1,1)	
[0, 1]	
N	
\mathbb{R}	
$\mathbb Q$	
$(-1,1) \cup [0,1]$	
$(-1,1)\setminus\{\tfrac{1}{2}\}$	

Accumulation point



Definition (Accumulation Point or Limit Point or Cluster Point)

If $E \subseteq \mathbb{R}$ then x is an *accumulation point* of E if every neighbourhood of x contains infinitely many points of E,

i.e.,
$$\forall c > 0$$
 $(x - c, x + c) \cap (E \setminus \{x\}) \neq \emptyset$.

Note:

- It is possible but not necessary that $x \in E$.
- The shorthand condition is equivalent to saying that every deleted neighbourhood of x contains at least one point of E.

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Accumulation points**
- Submit.

Accumulation point examples

Set E	Accumulation points?
(-1,1)	
[0, 1]	
\mathbb{N}	
\mathbb{R}	
\mathbb{Q}	
$(-1,1) \cup [0,1]$	
$(-1,1)\setminus\{rac{1}{2}\}$	
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$	

Boundary point

Definition (Boundary Point)

If $E \subseteq \mathbb{R}$ then x is a **boundary point** of E if every neighbourhood of x contains at least one point of E and at least one point not in E, *i.e.*,

$$\forall c > 0$$
 $(x - c, x + c) \cap E \neq \emptyset$
 $\wedge (x - c, x + c) \cap (\mathbb{R} \setminus E) \neq \emptyset$.

Note: It is possible but <u>not necessary</u> that $x \in E$.

Definition (Boundary)

If $E \subseteq \mathbb{R}$ then the **boundary** of E, denoted ∂E , is the set of all boundary points of E.

Boundary point examples

Set E	Boundary points?
(-1,1)	
[0, 1]	
\mathbb{N}	
\mathbb{R}	
Q	
$(-1,1) \cup [0,1]$	
$(-1,1)\setminus\{rac{1}{2}\}$	
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$	

Closed set

Definition (Closed set)

A set $E \subseteq \mathbb{R}$ is *closed* if it contains all of its accumulation points.

Definition (Closure of a set)

If $E \subseteq \mathbb{R}$ and E' is the set of accumulation points of E then the closure of E is

$$\overline{E} = E \cup E'$$
.

Note: If the set E has no accumulation points, then E is closed because there are no accumulation points to check.

Open set

Definition (Open set)

A set $E \subseteq \mathbb{R}$ is *open* if every point of E is an interior point.

Definition (Interior of a set)

If $E \subseteq \mathbb{R}$ then the *interior* of E, denoted int(E) or E° , is the set of all interior points of E.

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Open or Closed**
 - Submit.

Examples

Set E	Closed?	Open?	Ē	E°	∂E
(-1,1)					
[0, 1]					
N					
\mathbb{R}					
Ø					
\mathbb{Q}					
$(-1,1) \cup [0,1]$					
$\left(-1,1 ight)\setminus\{rac{1}{2}\}$					
$\boxed{\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}}$					

$$\begin{array}{l} \text{Mathematics} \\ \text{and Statistics} \\ \int_{M} d\omega = \int_{\partial M} \omega \end{array}$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

 $\begin{array}{c} \text{Lecture 15} \\ \text{Topology of } \mathbb{R} \text{ II} \\ \text{Wednesday 12 February 2025} \end{array}$

Announcements (same as on Monday, 10 Feb 2025)

- Solutions to Assignment 2 have been reposted after correcting some errors (thanks to Kieran for spotting these).
 - There were typos in Q2(b) and Q4.
 - **Q**3 was incomplete because I assumed f(x) was positive.
- Assignment 3 is posted on the course web site. Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I reposted the slides for Lecture 13. Slide 79 now contains a sequence of hints for proving π is irrational.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

Topological concepts covered so far

- Interval
- Neighbourhood
- Deleted neighbourhood
- Interior point
- Isolated point
- Accumulation point

- Boundary point
- Boundary
- Closed set
- Closure
- Open set
- Interior

Equivalent definitions

Example (<u>Closure</u>)

For $E \subseteq \mathbb{R}$, prove $E \cup E' = E \cup \partial E$, so \overline{E} can be defined either way.

Proof: We must show $E \cup E' \subseteq E \cup \partial E$ and $E \cup E' \supseteq E \cup \partial E$.

- ⊆ Suppose $x \in E \cup E'$. If $x \in E$ then $x \in E \cup A$ for any set A. In particular, $x \in E \cup \partial E$. Alternatively, suppose $x \notin E$, i.e., $x \in E^c$. Then, since $x \in E \cup E'$, it must be that $x \in E'$, which means that any neighbourhood of x contains a point of E. But $x \in E^c$, so any such neighbourhood also contains a point of E^c (namely x). Therefore, $x \in \partial E \subseteq E \cup \partial E$.
- ⊇ Suppose $x \in E \cup \partial E$. If $x \in E$ then $x \in E \cup A$ for any set A. In particular, $x \in E \cup E'$. Alternatively, suppose $x \notin E$, *i.e.*, $x \in E^c$. Then, since $x \in E \cup \partial E$, it must be that $x \in \partial E$, which means that any neighbourhood of x contains a point of E. But that point is not x, since $x \notin E$. Thus, any *deleted* neighbourhood of x contains a point of $x \in E' \subseteq E \cup E'$.

Question: In the proof above, did we use any properties of $\mathbb R$?

Poll

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: The most general type of open set**
 - Submit.

Component intervals of open sets

What does the most general open set look like?

Theorem (Component intervals)

If G is an open subset of \mathbb{R} and $G \neq \emptyset$ then there is a unique (possibly finite) sequence of <u>disjoint</u> open intervals $\{(a_n, b_n)\}$ such that

$$G=(a_1,b_1)\cup(a_2,b_2)\cup\cdots\cup(a_n,b_n)\cup\cdots,$$
 i.e., $G=\bigcup_{n=1}^{\infty}(a_n,b_n)$.

The open intervals (a_n, b_n) are said to be the **component** intervals of G.

(TBB Theorem 4.15, p. 231)

Component intervals of open sets

Main ideas of proof of component intervals theorem:

- \bullet $x \in G \implies x$ is an interior point of $G \implies$
 - some neighbourhood of x is contained in G, i.e., $\exists c > 0$ such that $(x c, x + c) \subseteq G$
 - \exists a <u>largest</u> neighbourhood of x that is contained in G: this "component of G" is $I_x = (\alpha, \beta)$, where

$$\alpha = \inf\{a : (a, x] \subset G\}, \qquad \beta = \sup\{b : [x, b) \subset G\}$$

- Every component I_x contains a rational number, i.e., $\exists r \in I_x \cap \mathbb{Q}$
- But for any $y \in I_x$, we have $I_y = I_x$
- \blacksquare : If $r_1, r_2 \in \mathbb{Q}$ and $r_1, r_2 \in I_x$ then $I_{r_1} = I_{r_2} = I_x$.
- Components with different endpoints cannot overlap (they would contradict the inf and sup) so distinct components are disjoint
- ∴ We can index (label) each component with a (unique) <u>rational</u> number
- ∴ There are at most countably many intervals that make up G (i.e., G is the union of a <u>sequence</u> of disjoint intervals)
- See textbook for details (TBB Theorem 4.15, p. 231).

Open vs. Closed Sets

Definition (Complement of a set of real numbers)

If $E \subseteq \mathbb{R}$ then the *complement* of *E* is the set

$$E^{c} = \{x \in \mathbb{R} : x \notin E\}.$$

Theorem (Open vs. Closed)

If $E \subseteq \mathbb{R}$ then E is open iff E^c is closed.

(TBB Theorem 4.16)

Open vs. Closed Sets

Theorem (Properties of open sets of real numbers)

- 1 The sets \mathbb{R} and \varnothing are open.
- 2 Any intersection of a finite number of open sets is open.
- 3 Any union of an arbitrary collection of open sets is open.
- 4 The complement of an open set is closed.

(TBB Theorem 4.17)

Theorem (Properties of closed sets of real numbers)

- 1 The sets \mathbb{R} and \emptyset are closed.
- 2 Any union of a finite number of closed sets is closed.
- 3 Any intersection of an arbitrary collection of closed sets is closed.
- The complement of a closed set is open.

(TBB Theorem 4.18)

Definition (Bounded function)

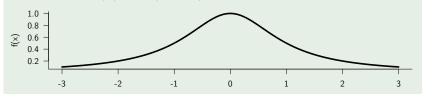
A real-valued function f is **bounded** on the set E if there exists M > 0 such that $|f(x)| \le M$ for all $x \in E$.

(i.e., the function f is bounded on E iff $\{f(x) : x \in E\}$ is a bounded set.)

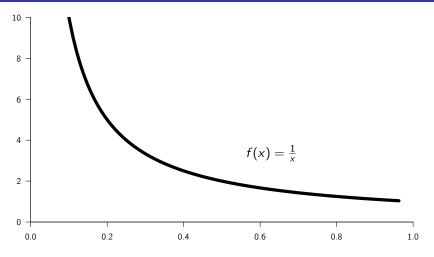
<u>Note</u>: This is a *global* property because there is a single bound M associated with the entire set E.

Example

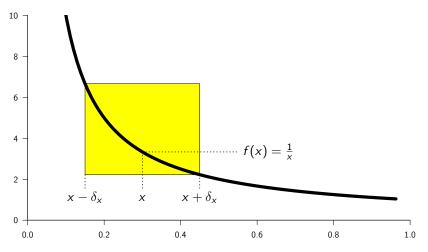
The function $f(x) = 1/(1+x^2)$ is bounded on \mathbb{R} . *e.g.*, M = 1.



Instructor: David Earn



f(x) = 1/x is <u>not</u> bounded on the interval E = (0, 1).



f(x) = 1/x is **locally bounded** on the interval E = (0, 1), i.e., $\forall x \in E$, $\exists \delta_x, M_x > 0$ $\mid f(t) \mid \leq M_x \ \forall t \in (x - \delta_x, x + \delta_x)$.

Definition (Locally bounded at a point)

A real-valued function f is **locally bounded** at the point x if there is a neighbourhood of x in which f is bounded, *i.e.*, there exists $\delta_x > 0$ and $M_x > 0$ such that $|f(t)| \leq M_x$ for all $t \in (x - \delta_x, x + \delta_x)$.

Definition (Locally bounded on a set)

A real-valued function f is **locally bounded** on the set E if f is locally bounded at each point $x \in E$.

Note: The size of the neighbourhood (δ_x) and the local bound (M_x) depend on the point x.

Example (Function that is not even locally bounded)

Give an example of a function that is defined on the interval (0,1) but is <u>not locally bounded</u> on (0,1).

Let's construct a function f(x) that is defined on (0,1) but is not locally bounded at one point, say $x=\frac{1}{2}$.

f(x) must blow up $x=\frac{1}{2}$. Let's make f look like 1/x, but shifted so the blowup is at $x=\frac{1}{2}$.

$$f(x) = \begin{cases} \frac{1}{x - \frac{1}{2}} & x \neq \frac{1}{2}, \\ 0 & x = \frac{1}{2}. \end{cases}$$

Example (Function that is a mess near 0)

Give an example of a function f(x) that is defined everywhere, yet in <u>any</u> neighbourhood of the origin there are infinitely many points at which f is <u>not locally bounded</u>.

Please do poll: Topology: Local boundedness

Consider
$$S(x) = \begin{cases} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

S(x) is bounded on \mathbb{R} , hence locally bounded at every point.

Consider
$$T(x) = \begin{cases} \tan \frac{1}{x} & x \neq 0 \text{ and } \cos \frac{1}{x} \neq 0 \\ 0 & x = 0 \text{ or } \cos \frac{1}{x} = 0 \end{cases}$$

T(x) is not locally bounded at points where $\cos \frac{1}{x} = 0$, *i.e.*, for $\frac{1}{x} = \frac{\pi}{2} + n\pi$, $n \in \mathbb{Z}$. There are infinitely many such points in any neighbourhood of x = 0.

$\begin{array}{l} \text{Mathematics} \\ \text{and Statistics} \\ \int_{M} d\omega = \int_{\partial M} \omega \end{array}$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 16 Topology of $\mathbb R$ III Friday 14 February 2025

Poll

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Poll on polls
- Submit.

Announcements

- Poll for Assignment 3 will be live after class today.
 Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I improved the sketch of the component intervals theorem proof on slide 28.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

Poll

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Locally bounded nowhere?**
- Submit.

Local vs. Global properties

Extra Challenge Problem:

Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is <u>not</u> locally bounded <u>anywhere</u>?

Local vs. Global properties

- What condition(s) rule out such pathological behaviour?
- When does a property holding locally (near any given point in a set) imply that it holds globally (for the set as a whole)?
- For example: What condition(s) must a set $E \subseteq \mathbb{R}$ satisfy in order that a function f that is locally bounded on E is necessarily bounded on E?
- We will see that the condition we are seeking is that the set E must be "compact" . . .

Recall the Bolzano-Weierstrass theorem, for sequences of real numbers:

Theorem (Bolzano-Weierstrass theorem for sequences)

Every bounded sequence in \mathbb{R} contains a convergent subsequence.

For any set of real numbers, we define:

Definition (Bolzano-Weierstrass property)

A set $E \subseteq \mathbb{R}$ is said to have the **Bolzano-Weierstrass property** iff any sequence of points chosen from E has a subsequence that converges to a point in E.

Theorem (Bolzano-Weierstrass theorem for sets)

A set $E \subseteq \mathbb{R}$ has the Bolzano-Weierstrass property iff E is closed and bounded.

(TBB Theorem 4.21, p. 241)

Proof of \iff .

Suppose E is closed and bounded. Let $\{x_n\}$ be a sequence in E. Since E is bounded, the usual Bolzano-Weierstrass theorem implies that there is a subsequence $\{x_{n_k}\}$ that converges. If $\{x_{n_k}\}$ is eventually constant, then its limit is a point in E, so we're done. Otherwise, $\{x_{n_k}\}$ must converge to an accumulation point of E. But E is closed, so it contains all its accumulation points, including the limit of $\{x_{n_k}\}$. Thus, again, we have a subsequence of $\{x_n\}$ that converges to a point in E.

Theorem (Bolzano-Weierstrass theorem for sets)

A set $E \subseteq \mathbb{R}$ has the Bolzano-Weierstrass property iff E is closed and bounded.

Proof of \implies (Part 1)

Let's prove the contrapositive, i.e., If E is either not bounded or not closed then E does not have the Bolzano-Weierstrass property. Suppose *E* is unbounded. In particular, suppose *E* is not bounded above (the argument is similar if E is not bounded below). We will construct a sequence in E that has no convergent subsequence. Pick a point $x_1 \in E$ such that $x_1 > 1$ (which is possible because E is not bounded above). Also, since E is not bounded above, we can find $x_2 \in E$ such that $x_2 > x_1 + 1 > 2$. More generally, given $x_k \in E$ we can find $x_{k+1} \in E$ such that $x_{k+1} > x_k + 1 > k + 1$. The sequence $\{x_n\}$ constructed in this way is increasing and diverges to ∞ (since $x_n > n$ for all $n \in \mathbb{N}$). Moreover, this is true of any subsequence of $\{x_n\}$. \therefore E does not have the Bolzano-Weierstrass property.

Theorem (Bolzano-Weierstrass theorem for sets)

A set $E \subseteq \mathbb{R}$ has the Bolzano-Weierstrass property iff E is closed and bounded.

Proof of \implies (Part 2)

Now *suppose* E *is not closed.* Then there must be a sequence $\{x_n\}$ in E such that $\{x_n\}$ converges to a point <u>not</u> in E. If E has the Bolzano-Weierstrass property, then $\{x_n\}$ has a subsequence that converges to a point in E. But every subsequence of a convergent sequence must converge to the same point as the full sequence, and the full sequence converges to a point <u>not</u> in E! Thus, if E is not closed *then it does not have the Bolzano-Weierstrass property.*

Theorem (Bolzano-Weierstrass theorem for sets)

A set $E \subseteq \mathbb{R}$ has the Bolzano-Weierstrass property iff E is closed and bounded.

Notes:

- Why do we need both *closed* and *bounded*? Why don't we need *closed* in the Bolzano-Weierstrass theorem for sequences?
 - Because the statement of the Bolzano-Weierstrass theorem for sequences doesn't require the limit of the convergent subsequence to be in the set!
- The Bolzano-Weierstrass theorem for sets implies that "If $E \subseteq \mathbb{R}$ is bounded then its closure \overline{E} has the Bolzano-Weierstrass property".
 - The Bolzano-Weierstrass theorem for sequences is a special case of this statement because any convergent sequence together with its limit is a closed set.

Definition (Open Cover)

Let $E \subseteq \mathbb{R}$ and let \mathcal{U} be a family of open intervals. If for every $x \in E$ there exists at least one interval $U \in \mathcal{U}$ such that $x \in U$, *i.e.*,

$$E\subseteq\bigcup\{U:U\in\mathcal{U}\}\,,$$

then \mathcal{U} is called an *open cover* of E.

Example (Open covers of \mathbb{N})

Give examples of open covers of \mathbb{N} .

•
$$\mathcal{U} = \left\{ \left(n - \frac{1}{2}, n + \frac{1}{2} \right) : n = 1, 2, \ldots \right\}$$

- $\mathcal{U} = \{(0,\infty)\}$
- $U = \{(0, \infty), \mathbb{R}, (\pi, 27)\}$

Example (Open covers of $\{\frac{1}{n}: n \in \mathbb{N}\}\)$

- $U = \{(0,1), (0,2), \mathbb{R}, (\pi,27)\}$
- $U = \{(0,2)\}$
- $\blacksquare \mathcal{U} = \left\{ \left(\frac{1}{n}, \frac{1}{n} + \frac{3}{4} \right) : n = 1, 2, \ldots \right\}$

Example (Open covers of [0, 1])

- $U = \{(-2,2)\}$
- $\mathcal{U} = \{(-\frac{1}{2}, \frac{1}{2}), (0, 2)\}$
- $\blacksquare \ \mathcal{U} = \left\{ \left(\frac{1}{n}, 2\right) : n = 1, 2, \ldots \right\} \cup \left\{ \left(-\frac{1}{2}, \frac{1}{2}\right) \right\}$

Poll

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Open covers of inverse squares**
- Submit.

Definition (Heine-Borel Property)

A set $E \subseteq \mathbb{R}$ is said to have the *Heine-Borel property* if every open cover of E can be reduced to a finite subcover. That is, if \mathcal{U} is an open cover of E, then there exists a finite subfamily $\{U_1, U_2, \ldots, U_n\} \subseteq \mathcal{U}$, such that $E \subseteq U_1 \cup U_2 \cup \cdots \cup U_n$.

When does \underline{any} open cover of a set E have a \underline{finite} subcover?

Theorem (Heine-Borel Theorem)

A set $E \subseteq \mathbb{R}$ has the Heine-Borel property iff E is both closed and bounded.

(TBB pp. 249-250)

Definition (Compact Set)

A set $E \subseteq \mathbb{R}$ is said to be *compact* if it has any of the following equivalent properties:

- **1** E is closed and bounded.
- **2** *E* has the Bolzano-Weierstrass property.
- **3** *E* has the Heine-Borel property.

<u>Note</u>: In spaces other than \mathbb{R} , these three properties are <u>not</u> necessarily equivalent. Usually the Heine-Borel property is taken as the definition of compactness.

Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it is <u>not closed</u> or <u>not</u> bounded.

Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it does <u>not</u> have the Bolzano-Weierstrass property.

Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it does <u>not</u> have the Heine-Borel property.

Poll

- Go to
 https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Compactness**
- Submit.

Classic <u>non-trivial</u> compactness argument:

Theorem (Compact \implies bounded if locally bounded)

Let E be a compact subset of \mathbb{R} . If $f: E \to \mathbb{R}$ is locally bounded on E then f is bounded on E.

Proof via Bolzano-Weierstrass.

E satisfies the Bolzano-Weierstrass property, *i.e.*, any sequence in E has a subsequence that converges to a point in E. Suppose, in order to derive a contradiction, that f is <u>not</u> bounded on E. Then there is some sequence $\{x_n\}$ in E such that $|f(x_n)| > n$ (otherwise $|f(x_n)| \le N$ for some $N \in \mathbb{N}$, so N would be a bound). By the Bolzano-Weierstrass property, $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to L \in E$. Since f is locally bounded, there exist $\delta > 0$ and M > 0 and such that $|f(x)| \le M$ for all $x \in (L - \delta, L + \delta)$. But $x_{n_k} \to L$, so for all sufficiently large k, $x_{n_k} \in (L - \delta, L + \delta)$. Yet for sufficiently large k, $|f(x_{n_k})| > n_k \ge k > M$. $\Rightarrow \Leftarrow$. Hence f must, in fact, be bounded on E.

$\mathsf{Theorem}\;(\mathsf{Compact}\;\Longrightarrow\;\mathsf{bounded}\;\mathsf{if}\;\mathsf{locally}\;\mathsf{bounded})$

Let E be a compact subset of \mathbb{R} . If $f: E \to \mathbb{R}$ is locally bounded on E then f is bounded on E.

Proof via Heine-Borel.

Since f is locally bounded, each $x \in E$ lies in some open interval U_X such that $|f(t)| \leq M_X$ for all $t \in U_X$. The collection $\mathcal{U} = \{U_X : X \in E\}$ is an open cover of E. But E satisfies the Heine-Borel property, so \mathcal{U} contains a finite subcover, say $\{U_{X_1}, \ldots, U_{X_n}\}$. We can therefore find a bound for f on all of E. Let $M = \max\{M_{X_1}, \ldots, M_{X_n}\}$. Then $|f(x)| \leq M$ for all $x \in E$.

Proof via Heine-Borel is much easier!

$\overline{\mathsf{Theorem}}$ (Compact \Longrightarrow bounded if locally bounded)

Let E be a compact subset of \mathbb{R} . If $f: E \to \mathbb{R}$ is locally bounded on E then f is bounded on E.

Example (Converse of above theorem)

Let $E \subseteq \mathbb{R}$. If every function $f : E \to \mathbb{R}$ that is locally bounded on E is bounded on E, then E is compact.

Note: Contrapositive of converse is: If $E \subseteq \mathbb{R}$ is <u>not</u> compact then $\exists f: E \to \mathbb{R}$ f is locally bounded on E but <u>not</u> bounded on E.