14 Topology of \mathbb{R} I

15 Topology of \mathbb{R} ||

Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 14 Topology of ℝ I Monday 10 February 2025

Announcements

- Solutions to Assignment 2 have been reposted after correcting some errors (thanks to Kieran for spotting these).
 - There were typos in Q2(b) and Q4.
 - **Q**3 was incomplete because I assumed f(x) was positive.
- Assignment 3 is posted on the course web site. Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I reposted the slides for Lecture 13. Slide 79 now contains a sequence of hints for proving π is irrational.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

Topology of ${\mathbb R}$

Open interval:

$$(a, b) = \{x : a < x < b\}$$

Closed interval:

$$[c,d] = \{x : c \le x \le d\}$$

Half-open interval:

$$(e, f] = \{x : e < x \le f\}$$

Interior point

Definition (Interior point)

If $E \subseteq \mathbb{R}$ then x is an *interior point* of E if x lies in an open interval that is contained in E, *i.e.*,

$$\exists c > 0 \quad) \quad (x - c, x + c) \subset E.$$

_

Set E	Interior points?
(-1, 1)	
[0,1]	
\mathbb{N}	
\mathbb{R}	
\mathbb{Q}	
$(-1,1)\cup \left[0,1 ight]$	
$\left(-1,1 ight)\setminus\left\{rac{1}{2} ight\}$	

Neighbourhood

Definition (Neighbourhood)

A *neighbourhood* of a point $x \in \mathbb{R}$ is an open interval containing x.

Deleted neighbourhood

Definition (Deleted neighbourhood)

A *deleted neighbourhood* of a point $x \in \mathbb{R}$ is a set formed by removing x from a neighbourhood of x.

Isolated point

 $E = (a_1, b_1) \cup [a_2, b_2) \cup \{x\}$

Definition (Isolated point)

If $x \in E \subseteq \mathbb{R}$ then x is an *isolated point* of E if there is a neighbourhood of x for which the only point in E is x itself, *i.e.*,

$$\exists c > 0 \quad) \quad (x - c, x + c) \cap E = \{x\}.$$

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Isolated points

Submit.

Isolated point examples

Set E	Isolated points?
(-1, 1)	
[0,1]	
\mathbb{N}	
\mathbb{R}	
\mathbb{Q}	
$(-1,1)\cup \llbracket 0,1 brace$	
$\left(-1,1 ight)\setminus \{rac{1}{2}\}$	

Accumulation point

$$E = \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$$

Definition (Accumulation Point or Limit Point or Cluster Point)

If $E \subseteq \mathbb{R}$ then x is an *accumulation point* of E if every neighbourhood of x contains infinitely many points of E,

i.e.,
$$\forall c > 0$$
 $(x - c, x + c) \cap (E \setminus \{x\}) \neq \emptyset$.

<u>Note</u>:

- It is possible but <u>not necessary</u> that $x \in E$.
- The shorthand condition is equivalent to saying that every <u>deleted neighbourhood</u> of x contains <u>at least one</u> point of E.

Poll

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Accumulation points**

Submit.

Accumulation point examples

Set E	Accumulation points?
(-1, 1)	
[0, 1]	
\mathbb{N}	
\mathbb{R}	
Q	
$(-1,1)\cup [0,1]$	
$(-1,1)\setminus\{rac{1}{2}\}$	
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$	

Boundary point

Definition (Boundary Point)

If $E \subseteq \mathbb{R}$ then x is a **boundary point** of E if every neighbourhood of x contains at least one point of E and at least one point not in E, *i.e.*, $\forall c > 0$, $(x = c, x + c) \cap E \neq \emptyset$

$$\forall c > 0 \qquad (x - c, x + c) \cap E \neq \varnothing$$
$$\land \qquad (x - c, x + c) \cap (\mathbb{R} \setminus E) \neq \varnothing.$$

<u>*Note:*</u> It is possible but <u>not necessary</u> that $x \in E$.

Definition (Boundary)

If $E \subseteq \mathbb{R}$ then the **boundary** of *E*, denoted ∂E , is the set of all boundary points of *E*.

Boundary point examples

Set E	Boundary points?
(-1, 1)	
[0, 1]	
\mathbb{N}	
\mathbb{R}	
Q	
$(-1,1)\cup [0,1]$	
$(-1,1)\setminus \{rac{1}{2}\}$	
$\left\{1-rac{1}{n}:n\in\mathbb{N} ight\}$	

Closed set

Definition (Closed set)

A set $E \subseteq \mathbb{R}$ is *closed* if it contains all of its accumulation points.

Definition (Closure of a set)

If $E \subseteq \mathbb{R}$ and E' is the set of accumulation points of E then the **closure** of E is

 $\overline{F} = F \cup E'$.

Note: If the set *E* has no accumulation points, then *E* is closed because there are no accumulation points to check.

Definition (Open set)

A set $E \subseteq \mathbb{R}$ is *open* if every point of *E* is an interior point.

Definition (Interior of a set)

If $E \subseteq \mathbb{R}$ then the *interior* of E, denoted int(E) or E° , is the set of all interior points of E.

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Open or Closed

Submit.

Examples

Set E	Closed?	Open?	Ē	E°	∂E
(-1,1)					
[0, 1]					
\mathbb{N}					
\mathbb{R}					
Ø					
\mathbb{Q}					
$(-1,1) \cup [0,1]$					
$\left(-1,1 ight)\setminus \left\{rac{1}{2} ight\}$					
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$					

Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 15 Topology of ℝ II Wednesday 12 February 2025 22/57

Announcements

- Solutions to Assignment 2 have been reposted after correcting some errors (thanks to Kieran for spotting these).
 - There were typos in Q2(b) and Q4.
 - **Q**3 was incomplete because I assumed f(x) was positive.
- Assignment 3 is posted on the course web site. Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I reposted the slides for Lecture 13. Slide 79 now contains a sequence of hints for proving π is irrational.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

Topological concepts covered so far

Interval

- Neighbourhood
- Deleted neighbourhood
- Interior point
- Isolated point
- Accumulation point

- Boundary point
- Boundary
- Closed set
- Closure
- Open set
- Interior

Equivalent definitions

Example (Closure)

For $E \subseteq \mathbb{R}$, prove $E \cup E' = E \cup \partial E$, so \overline{E} can be defined either way.

Proof: We must show $E \cup E' \subseteq E \cup \partial E$ and $E \cup E' \supseteq E \cup \partial E$.

- ⊆ Suppose $x \in E \cup E'$. If $x \in E$ then $x \in E \cup A$ for any set A. In particular, $x \in E \cup \partial E$. Alternatively, suppose $x \notin E$, *i.e.*, $x \in E^c$. Then, since $x \in E \cup E'$, it must be that $x \in E'$, which means that any neighbourhood of x contains a point of E. But $x \in E^c$, so any such neighbourhood also contains a point of E^c (namely x). Therefore, $x \in \partial E \subseteq E \cup \partial E$.
- ⊇ Suppose $x \in E \cup \partial E$. If $x \in E$ then $x \in E \cup A$ for any set A. In particular, $x \in E \cup E'$. Alternatively, suppose $x \notin E$, *i.e.*, $x \in E^c$. Then, since $x \in E \cup \partial E$, it must be that $x \in \partial E$, which means that any neighbourhood of x contains a point of E. But that point is not x, since $x \notin E$. Thus, any *deleted* neighbourhood of x contains a point of E. Contains a point of E. But that point is not x, since $x \notin E$. Thus, any *deleted* neighbourhood of x contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains

Question: In the proof above, did we use any properties of $\mathbb R$?

Poll

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: The most general type of open set

Submit.

Component intervals of open sets

What does the most general open set look like?

Theorem (Component intervals)

If G is an open subset of \mathbb{R} and $G \neq \emptyset$ then there is a unique (possibly finite) sequence of <u>disjoint</u> open intervals $\{(a_n, b_n)\}$ such that

$$G = (a_1, b_1) \cup (a_2, b_2) \cup \cdots \cup (a_n, b_n) \cup \cdots,$$

i.e.,
$$G = \bigcup_{n=1}^{\infty} (a_n, b_n).$$

The open intervals (a_n, b_n) are said to be the **component** intervals of *G*.

(TBB Theorem 4.15, p. 231)

Component intervals of open sets

Main ideas of proof of component intervals theorem:

- $\blacksquare \ x \in G \implies x \text{ is an interior point of } G \implies$
 - some neighbourhood of x is contained in G, *i.e.*, $\exists c > 0$ such that $(x - c, x + c) \subseteq G$
 - \exists a <u>largest</u> neighbourhood of x that is contained in G: this "*component of* G" is $I_x = (\alpha, \beta)$, where

$$\alpha = \inf\{a: (a, x] \subset G\}, \qquad \beta = \sup\{b: [x, b) \subset G\}$$

• I_x contains a rational number, *i.e.*, $\exists r \in I_x \cap \mathbb{Q}$

- \therefore We can index all the intervals I_x by <u>rational</u> numbers
- ∴ There are are most countably many intervals that make up *G* (*i.e.*, *G* is the union of a <u>sequence</u> of intervals)
- We can choose a <u>disjoint</u> subsequence of these intervals whose union is all of G; see proof in TBB textbook for details (TBB Theorem 4.15, p. 231).

Open vs. Closed Sets

Definition (Complement of a set of real numbers)

If $E \subseteq \mathbb{R}$ then the *complement* of *E* is the set

$$E^{\mathsf{c}} = \{ x \in \mathbb{R} : x \notin E \} \,.$$

Theorem (Open vs. Closed)

```
If E \subseteq \mathbb{R} then E is open iff E^{c} is closed.
```

(TBB Theorem 4.16)

Open vs. Closed Sets

Theorem (Properties of open sets of real numbers)

- **1** The sets \mathbb{R} and \emptyset are open.
- **2** Any intersection of a finite number of open sets is open.
- **3** Any union of an arbitrary collection of open sets is open.
- 4 The complement of an open set is closed.

(TBB Theorem 4.17)

Theorem (Properties of closed sets of real numbers)

- **1** The sets \mathbb{R} and \emptyset are closed.
- 2 Any union of a finite number of closed sets is closed.
- 3 Any intersection of an arbitrary collection of closed sets is closed.
- 4 The complement of a closed set is open.

(TBB Theorem 4.18)

Definition (Bounded function)

A real-valued function f is **bounded** on the set E if there exists M > 0 such that $|f(x)| \le M$ for all $x \in E$.

(*i.e.*, the function f is bounded on E iff $\{f(x) : x \in E\}$ is a bounded set.)

<u>Note</u>: This is a *global* property because there is a single bound M associated with the entire set E.

Example

The function $f(x) = 1/(1 + x^2)$ is bounded on \mathbb{R} . *e.g.*, M = 1.

f(x) = 1/x is <u>not</u> bounded on the interval E = (0, 1).

f(x) = 1/x is *locally bounded* on the interval E = (0, 1), *i.e.*, $\forall x \in E$, $\exists \delta_x, M_x > 0 + |f(t)| \leq M_x \ \forall t \in (x - \delta_x, x + \delta_x).$

Definition (Locally bounded at a point)

A real-valued function f is *locally bounded* at the point x if there is a neighbourhood of x in which f is bounded, *i.e.*, there exists $\delta_x > 0$ and $M_x > 0$ such that $|f(t)| \le M_x$ for all $t \in (x - \delta_x, x + \delta_x)$.

Definition (Locally bounded on a set)

A real-valued function f is *locally bounded* on the set E if f is locally bounded at each point $x \in E$.

<u>Note</u>: The size of the neighbourhood (δ_x) and the local bound (M_x) depend on the point x.

Example (Function that is not even locally bounded)

Give an example of a function that is defined on the interval (0, 1) but is <u>not</u> locally bounded on (0, 1).

Let's construct a function f(x) that is defined on (0, 1) but is not locally bounded at one point, say $x = \frac{1}{2}$.

f(x) must blow up $x = \frac{1}{2}$. Let's make f look like 1/x, but shifted so the blowup is at $x = \frac{1}{2}$.

$$f(x) = \begin{cases} \frac{1}{x - \frac{1}{2}} & x \neq \frac{1}{2}, \\ 0 & x = \frac{1}{2}. \end{cases}$$

Example (Function that is a mess near 0)

Give an example of a function f(x) that is defined everywhere, yet in <u>any</u> neighbourhood of the origin there are infinitely many points at which f is <u>not</u> locally bounded.

Please do poll: Topology: Local boundedness

Consider
$$S(x) = \begin{cases} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $S(x)$ is bounded on \mathbb{R} , hence locally bounded at every point.

Consider $T(x) = \begin{cases} \tan \frac{1}{x} & \cos x \neq 0\\ 0 & \cos x = 0 \end{cases}$ T(x) is not locally bounded at points where $\cos x = 0$, *i.e.*, for $x = \frac{\pi}{2} + n\pi$, $n \in \mathbb{Z}$. There are infinitely many such points in any neighbourhood of x = 0.

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Locally bounded nowhere?

Submit.

Extra Challenge Problem: Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is not locally bounded <u>anywhere</u>?

- What condition(s) rule out such pathological behaviour?
- When does a property holding locally (near any given point in a set) imply that it holds globally (for the set as a whole)?
- For example: What condition(s) must a set E ⊆ R satisfy in order that a function f that is locally bounded on E is necessarily bounded on E?
- We will see that the condition we are seeking is that the set E must be "compact" ...