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Announcements

Solutions to Assignment 1 were posted last night.

Kieran will have office hours tomorrow (Thursday) for two
hours, 12:30–2:30 pm. (He will not have a Friday office hour
this week.)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Integration

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integration

f

R(f , a, b)

(
a, 0

) (
b, 0

)

“Area of region R(f , a, b)” is actually a very subtle concept.
We will only scratch the surface of it (greater depth in Math 4A).
Our treatment is similar to that in Michael Spivak’s “Calculus” (2008);
BS refer to this approach as the Darboux integral (BS §7.4, p. 225).
The Darboux and Riemann approaches to the integral are equivalent.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integration

f

(
a, 0

) (
b, 0

)

Contribution to “area of R(f , a, b)” is positive or negative
depending on whether f is positive or negative.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower sum

a = t0 t1 t2 t3 t4 = b

m1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Upper sum

a = t0 t1 t2 t3 t4 = b

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 = b

m1
M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

m1
M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

m1M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Partition)
Let a < b. A partition of the interval [a, b] is a finite collection of
points in [a, b], one of which is a, and one of which is b.

We normally label the points in a partition

a = t0 < t1 < · · · < tn−1 < tn = b ,

so the i th subinterval in the partition is

[ti−1, ti ] .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Lower and upper sums)
Suppose f is bounded on [a, b] and P = {t0, . . . , tn} is a partition
of [a, b]. Recalling the motivating sketch, let

mi = inf
{

f (x) : x ∈ [ti−1, ti ]
}

,

Mi = sup
{

f (x) : x ∈ [ti−1, ti ]
}

.

The lower sum of f for P, denoted by L(f , P), is defined as

L(f , P) =
n∑

i=1
mi(ti − ti−1) .

The upper sum of f for P, denoted by U(f , P), is defined as

U(f , P) =
n∑

i=1
Mi(ti − ti−1) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Relationship between motivating sketch and rigorous definition
of lower and upper sums:

The lower and upper sums correspond to the total areas of
rectangles lying below and above the graph of f in our
motivating sketch.

However, these sums have been defined precisely
without any appeal to a concept of “area”.

The requirement that f be bounded on [a, b] is essential in
order to be sure that all the mi and Mi are well-defined.

It is also essential that the mi and Mi be defined as inf’s and
sup’s (rather than maxima and minima) because f was not
assumed to be continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral
Relationship between motivating sketch and rigorous definition
of lower and upper sums:

Since mi ≤ Mi for each i , we have

mi(ti − ti−1) ≤ Mi(ti − ti−1) , i = 1, . . . , n.

∴ For any partition P of [a, b] we have

L(f , P) ≤ U(f , P),

because
L(f , P) =

n∑

i=1
mi(ti − ti−1) ,

U(f , P) =
n∑

i=1
Mi(ti − ti−1) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: Lower and Upper Sums

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Rigorous development of the integral

Relationship between motivating sketch and rigorous definition
of lower and upper sums:

More generally, if P1 and P2 are any two partitions of [a, b],
it ought to be true that

L(f , P1) ≤ U(f , P2),

because L(f , P1) should be ≤ area of R(f , a, b), and U(f , P2)
should be ≥ area of R(f , a, b).

But “ought to” and “should be” prove nothing, especially
since we haven’t yet even defined “area of R(f , a, b)”.

Before we can define “area of R(f , a, b)”, we need to prove
that L(f , P1) ≤ U(f , P2) for any partitions P1, P2 . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Lemma (Partition Lemma)
If partition P ⊆ partition Q (i.e., if every point of P is also in Q),
then L(f , P) ≤ L(f , Q) and U(f , P) ≥ U(f , Q).

a = t0 t1 t2 = b
a = u0 u1 u2 u3 u4 u5 = b

f

m′′
m′

P = {t0, t1, t2}
Q = {u0(= t0), u1, u2(= t1), u3, u4, u5(= t2)}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Partition Lemma
As a first step, consider the special case in which the finer partition
Q contains only one more point than P:

P = {t0, . . . , tn} ,

Q = {t0, . . . , tk−1, u, tk , . . . , tn} ,

where

a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b .

Because [tk−1, tk ] is split by u, we have two lower bounds:

m′ = inf
{

f (x) : x ∈ [tk−1, u]
}

,

m′′ = inf
{

f (x) : x ∈ [u, tk ]
}

.

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Partition Lemma (cont.)

Then L(f , P) =
n∑

i=1
mi(ti − ti−1) ,

and L(f , Q) =
k−1∑

i=1
mi(ti − ti−1) + m′(u − tk−1)

+ m′′(tk − u) +
n∑

i=k+1
mi(ti − ti−1) .

∴ To prove L(f , P) ≤ L(f , Q), it is enough to show

mk(tk − tk−1) ≤ m′(u − tk−1) + m′′(tk − u) .

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Partition Lemma (cont.)
Now note that since

{
f (x) : x ∈ [tk−1, u]

} ⊆ {
f (x) : x ∈ [tk−1, tk ]

}
,

the RHS might contain some additional smaller numbers, so we
must have

mk = inf
{

f (x) : x ∈ [tk−1, tk ]
}

≤ inf
{

f (x) : x ∈ [tk−1, u]
}

= m′ .

Thus, mk ≤ m′, and, similarly, mk ≤ m′′.

∴ mk(tk − tk−1) = mk(tk − u + u − tk−1)
= mk(u − tk−1) + mk(tk − u)
≤ m′(u − tk−1) + m′′(tk − u) ,

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration 25/105

Rigorous development of the integral

Proof of Partition Lemma (cont.)
which proves (in this special case where Q contains only one more
point than P) that L(f , P) ≤ L(f , Q).
We can now prove the general case by adding one point at a time.
If Q contains ℓ more points than P, define a sequence of partitions

P = P0 ⊂ P1 ⊂ · · · ⊂ Pℓ = Q

such that Pj+1 contains exactly one more point than Pj . Then

L(f , P) = L(f , P0) ≤ L(f , P1) ≤ · · · ≤ L(f , Pℓ) = L(f , Q) ,

so L(f , P) ≤ L(f , Q).
(Proving U(f , P) ≥ U(f , Q) is similar: check!)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Theorem (Partition Theorem)
Let P1 and P2 be any two partitions of [a, b]. If f is bounded on
[a, b] then

L(f , P1) ≤ U(f , P2) .

Proof.
This is a straightforward consequence of the partition lemma.

Let P = P1 ∪ P2, i.e., P is the partition obtained by combining all
the points of P1 and P2.

Then
L(f , P1) ≤ L(f , P) ≤ U(f , P) ≤ U(f , P2) .

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration 27/105

Rigorous development of the integral
Important inferences that follow from the partition theorem:

For any partition P ′, the upper sum U(f , P ′) is an upper
bound for the set of all lower sums L(f , P).

∴ sup
{
L(f , P) : P a partition of [a, b]

} ≤ U(f , P ′) ∀P ′

∴ sup
{
L(f , P)

} ≤ inf
{
U(f , P)

}

∴ For any partition P ′,
L(f , P ′) ≤ sup

{
L(f , P)

} ≤ inf
{
U(f , P)

} ≤ U(f , P ′)

If sup
{
L(f , P)

}
= inf

{
U(f , P)

}
then we can define “area of

R(f , a, b)” to be this number.

Is it possible that sup
{

L(f , P)
}

< inf
{

U(f , P)
}

?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: sup
{
L(f , P)

}
< inf

{
U(f , P)

}
?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Mathematics
and Statistics∫

M
dω =

∫
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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 8
Integration II

Friday 24 January 2025

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 2 will be posted either during, or soon after, the
weekend.

Kieran’s office hours going forward are as follows:
Thursday 12:30–1:30 (Math Café)
Friday 12:30–1:30 (HH 207)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: sup
{
L(f , P)

}
< inf

{
U(f , P)

}
?

(AGAIN!)

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Rigorous development of the integral

Example
∃? f : [a, b] → R (bounded) )– sup

{
L(f , P)

}
< inf

{
U(f , P)

}

Let f (x) =
{

1 x ∈ Q ∩ [a, b],
0 x ∈ Qc ∩ [a, b].

Consider any partition P of [a, b].
If P = {t0, . . . , tn} then mi = 0 ∀i (∵ [ti−1, ti ] ∩ Qc ̸= ∅),

and Mi = 1 ∀i (∵ [ti−1, ti ] ∩ Q ̸= ∅).
∴ L(f , P) = 0 and U(f , P) = b − a for any partition P.
∴ sup

{
L(f , P)

}
= 0 < b − a = inf

{
U(f , P)

}
.

Can we define “area of R(f , a, b)” for such a weird function?
Yes, but not in this course!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Integrable)
A function f : [a, b] → R is said to be integrable on [a, b] if it is
bounded on [a, b] and

sup
{
L(f , P) : P a partition of [a, b]

}

= inf
{
U(f , P) : P a partition of [a, b]

}
.

In this case, this common number is called the integral of f on
[a, b] and is denoted ∫ b

a
f

Note: If f is integrable then for any partition P we have

L(f , P) ≤
∫ b

a
f ≤ U(f , P) ,

and
∫ b

a f is the unique number with this property.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Notation:
∫ b

a
f (x) dx means precisely the same as

∫ b

a
f .

The symbol “dx” has no meaning in isolation
just as “x →” has no meaning except in limx→a f (x).

It is not clear from the definition which functions are
integrable.

The definition of the integral does not itself indicate how to
compute the integral of any given integrable function. So far,
without a lot more effort, we can’t say much more than these
two things:

1 If f (x) ≡ c then f is integrable on [a, b] and
∫ b

a f = c · (b − a).
2 The weird example function is not integrable.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Bartle and Sherbert refer to functions that are integrable according
to our definition as Darboux integrable (BS §7.4, p. 225).

BS develop the integral using one value of the function within each
subinterval of a partition, rather than starting with upper and lower
sums. They refer to functions that are integrable in this sense as
Riemann integrable.

BS also prove (BS Theorem 7.4.11, p. 232) that a function is Riemann
integrable if and only if it is Darboux integrable. So the two
definitions are, in fact, equivalent.

In Math 4A03 you will define Lebesgue integrable, a more subtle
concept that makes it possible to attach meaning to “area of
R(f , a, b)” for the weird example function (among others), and to
precisely characterize functions that are Riemann integrable.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration II 36/105

Rigorous development of the integral

Theorem (Equivalent “ε-P” criterion for integrability)
A bounded function f : [a, b] → R is integrable on [a, b] iff for all
ε > 0 there is a partition P of [a, b] such that

U(f , P) − L(f , P) < ε .

(BS Theorem 7.4.8, p. 229)

Note: This theorem is just a restatement of the definition of
integrability. It is often more convenient to work with ε > 0 than
with sup’s and inf’s.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration II 37/105

Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
( =⇒ ) Suppose the bounded function f is integrable, i.e.,

sup{L(f , P) : P a partition of [a, b]}

= inf{U(f , P) : P a partition of [a, b]} =
∫ b

a
f

Given ε > 0, since
∫ b

a
f is the least upper bound of the lower sums,

there is a partition P1 such that
∫ b

a
f = sup

P′
{L(f , P ′)} < L(f , P1) + ε

2 ,

i.e., such that − L(f , P1) < −
∫ b

a
f + ε

2 . (♡)

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
Similarly, there is a partition P2 such that

U(f , P2) < inf
P′

{U(f , P ′)} + ε

2 =
∫ b

a
f + ε

2 . (♢)

Therefore, putting together inequalities (♢) and (♡), we have

U(f , P2) − L(f , P1) <

∫ b

a
f + ε

2 −
∫ b

a
f + ε

2 = ε

2 + ε

2 = ε .

But that’s not quite what we need. We need, for a single partition P,
U(f , P) − L(f , P) < ε.

How should we proceed? Hint: Recall the partition lemma . . .
. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
Let P = P1 ∪ P2. Then the partition lemma implies that
L(f , P) ≥ L(f , P1), and U(f , P) ≤ U(f , P2), so

U(f , P) − L(f , P) ≤ U(f , P2) − L(f , P1)

<

∫ b

a
f + ε

2 −
∫ b

a
f + ε

2 = ε ,

which competes the proof that sup = inf =⇒ ε-P.

( ⇐= ) We now need to show that if a bounded function f satisfies the
ε-P definition of integrability then it also satisfies the sup = inf definition
of integrability.
Given ε > 0, we can choose a partition P (depending on ε) such that

U(f , P) − L(f , P) < ε .
. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
Now, for any partition, and in particular for P, we have

L(f , P) ≤ sup
P′

{L(f , P ′)} ≤ inf
P′

{U(f , P ′)} ≤ U(f , P) ,

We can temporarily write this more simply as
L ≤ S ≤ I ≤ U

Subtracting S from this chain of inequalities implies
L − S ≤ 0 ≤ I − S ≤ U − S

Now note that L ≤ S implies U − S ≤ U − L, so we have
0 ≤ I − S ≤ U − L

i.e., 0 ≤ inf
P′

{U(f , P ′)}− sup
P′

{L(f , P ′)} ≤ U(f , P)−L(f , P) < ε .

But by hypothesis, such a partition P can be found for any given ε > 0.
Therefore, infP′{U(f , P ′)} = supP′{L(f , P ′)}.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Example
Suppose b > 0 and f (x) = x for all x ∈ R. Prove, using only the
definition of the integral via sup = inf or ε-P, that

∫ b

0
f = b2

2 .

(This exercise should help you appreciate the Fundamental
Theorem of Calculus.)

Note: If working through the above example doesn’t convince you
of the power of the Fundamental Theorem of Calculus, try
computing

∫ b
0 x2 dx directly from the definition of the integral.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫

M
dω =

∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 9
Integration III

Monday 27 January 2025

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 2 has been posted on the course web site.
The participation deadline is Monday 3 Feb 2025 @ 11:25am.

On Friday this week, the class will be a Q&A session with the
TA. It’s a great opportunity to ask questions about
Assignment 2, or anything else.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Last time. . .

Rigorous development of the integral:
Definition: integrable.

Example: non-integrable function.

Theorem: Equivalent “ε-P” definition of integrable.

Note: The different equivalent definitions are most convenient
in different contexts, e.g.,

Proving non-integrability of the weird example was easiest
using the sup-inf definition.
Computing the value of

∫ b
0 x dx is easiest using the ε-P

definition.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: Integrable vs Continuous vs
Differentiable

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Integral theorems
Theorem (continuous =⇒ integrable)
If f is continuous on [a, b] then f is integrable on [a, b].

Rough work to prepare for proof:

U(f , P) − L(f , P) =
n∑

i=1
(Mi − mi)(ti − ti−1)

Given ε > 0, choose a partition P that is so fine that Mi − mi < ε
for all i (possible because f is continuous and bounded). Then

U(f , P) − L(f , P) < ε
n∑

i=1
(ti − ti−1) = ε(b − a) .

Not quite what we want. So choose the partition P such that
Mi − mi < ε/(b − a) for all i . To get that, choose P such that

|f (x) − f (y)| <
ε

2(b − a) if |x − y | < max
1≤i≤n

(ti − ti−1),

which we can do because f is uniformly continuous on [a, b].
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integral theorems

Proof that continuous =⇒ integrable (cont.)
Since f is continuous on the closed interval [a, b], it is bounded on
[a, b] (which is the first requirement to be integrable on [a, b]).

Also, since f is continuous on [a, b], it is uniformly continuous on
[a, b]. ∴ ∀ε > 0 ∃δ > 0 such that ∀x , y ∈ [a, b],

|x − y | < δ =⇒ |f (x) − f (y)| <
ε

2(b − a) .

Now choose a partition of [a, b] such that the length of each
subinterval [ti−1, ti ] is less than δ, i.e., ti − ti−1 < δ. Then, for
any x , y ∈ [ti−1, ti ], we have |x − y | < δ and therefore

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integral theorems

Proof that continuous =⇒ integrable (cont.)

|f (x) − f (y)| <
ε

2(b − a) ∀x , y ∈ [ti−1, ti ] .

∴ Mi − mi ≤ ε

2(b − a) <
ε

b − a i = 1, . . . , n.

Since this is true for all i , it follows that

U(f , P) − L(f , P) =
n∑

i=1
(Mi − mi)(ti − ti−1)

<
ε

b − a

n∑

i=1
(ti − ti−1) = ε

b − a (b − a) = ε .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Integral segmentation)
Let a < c < b. If f is integrable on [a, b], then f is integrable on
[a, c] and on [c, b]. Conversely, if f is integrable on [a, c] and [c, b]
then f is integrable on [a, b]. Finally, if f is integrable on [a, b]
then ∫ b

a
f =

∫ c

a
f +

∫ b

c
f . (♡)

(a good exercise)

This theorem motivates these definitions:
∫ a

a
f = 0 and if a > b then

∫ b

a
f = −

∫ a

b
f .

Then (♡) holds for any a, b, c ∈ R.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Algebra of integrals – a.k.a.
∫ b

a is a linear operator)

If f and g are integrable on [a, b] and c ∈ R then f + g and cf are
integrable on [a, b] and

1
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g;

2
∫ b

a
cf = c

∫ b

a
f .

(proofs are relatively easy; good exercises) (BS Theorem 7.1.5, p. 204)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Integral of a product)
If f and g are integrable on [a, b] then fg is integrable on [a, b].

(compared to integral of a sum, proof is much harder; tough exercise)

Note:
There is no “product rule” for integrals. While f and g
integrable does imply fg integrable, we cannot write the
integral of the product fg in terms of the integrals of the
factors f and g .

The closest we can come to a product formula is integration
by parts, which arises from the Fundamental Theorem of
Calculus together with the product rule for derivatives.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Lemma (Integral bounds)
Suppose f is integrable on [a, b]. If m ≤ f (x) ≤ M for all
x ∈ [a, b] then

m(b − a) ≤
∫ b

a
f ≤ M(b − a) .

Proof.
For any partition P, we must have m ≤ mi ∀i and M ≥ Mi ∀i .

∴ m(b − a) ≤ L(f , P) ≤ U(f , P) ≤ M(b − a) ∀P

∴ m(b − a) ≤ sup{L(f , P)} =
∫ b

a
f = inf{U(f , P)}

≤ M(b − a) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Integrals are continuous)
If f is integrable on [a, b] and F is defined on [a, b] by

F (x) =
∫ x

a
f ,

then F is continuous on [a, b].

Proof
Let’s first consider x0 ∈ [a, b) and show F is continuous from
above at x0, i.e., limx→x+

0
F (x) = F (x0). If x ∈ (x0, b] then

(♡) =⇒ F (x) − F (x0) =
∫ x

a
f −

∫ x0

a
f =

∫ x

x0
f . (*)

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Proof that integrals are continuous (cont.)
Since f is integrable on [a, b], it is bounded on [a, b], so ∃M > 0
such that

−M ≤ f (x) ≤ M ∀x ∈ [a, b],

from which the integral bounds lemma implies

−M(x − x0) ≤
∫ x

x0
f ≤ M(x − x0) ,

∴ (∗) =⇒ − M(x − x0) ≤ F (x) − F (x0) ≤ M(x − x0) .

∴ For any ε > 0, we can ensure |F (x) − F (x0)| < ε by requiring
0 ≤ x − x0 < ε/M, which proves limx→x+

0
F (x) = F (x0).

A similar argument starting from x0 ∈ (a, b] and x ∈ [a, x0) yields
limx→x−

0
F (x) = F (x0). Thus, “integrals are continuous”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫

M
dω =

∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 10
Integration IV

Wednesday 29 January 2025

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration IV 56/105

Announcements

Assignment 2 has been posted on the course web site.
The participation deadline is Monday 3 Feb 2025 @ 11:25am.

On Friday this week, the class will be a Q&A session with the
TA. It’s a great opportunity to ask questions about
Assignment 2, or anything else.

The poll for Assignment 2 participation will open after class
today until 11:25am on Monday.

I have an office hour today, 2:00-3:00 pm.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Last time. . .

Rigorous development of the integral:
continuous =⇒ integrable.

Integral segmentation.

Algebra of integrals.

Integral bounds lemma.

Integrals are continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus – FFTC)
Let f be integrable on [a, b], and define F on [a, b] by

F (x) =
∫ x

a
f .

If f is continuous at c ∈ [a, b], then F is differentiable at c, and
F ′(c) = f (c) .

If c = a or c = b, then F ′(c) is understood to mean the right-
or left-hand derivative of F .
The “integrals are continuous” theorem implies that F is continuous
on all of [a, b]. The FFTC says, in addition, that F is differentiable
at the single point c.
The FFTC implies that if f is continuous on all of [a, b] then F is
differentiable on all of [a, b].

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

a bc c + h

mh

Mh

f integrable on [a, b]
and continuous at c

F (c + h) − F (c) ≃ f (c + h) · h
and lim

h→0
f (c + h) = f (c)

=⇒ lim
h→0

F (c + h) − F (c)
h = f (c)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

a bc c + h

mh

Mh

f integrable on [a, b]
and continuous at c

F (c + h) − F (c) ≃ f (c + h) · h
and lim

h→0
f (c + h) = f (c)

=⇒ lim
h→0

F (c + h) − F (c)
h = f (c)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

a bc c + h

mh

Mh

f integrable on [a, b]
and continuous at c

F (c + h) − F (c) ≃ f (c + h) · h
and lim

h→0
f (c + h) = f (c)

=⇒ lim
h→0

F (c + h) − F (c)
h = f (c)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

a bc c + h

mh
Mh

f integrable on [a, b]
and continuous at c

F (c + h) − F (c) ≃ f (c + h) · h
and lim

h→0
f (c + h) = f (c)

=⇒ lim
h→0

F (c + h) − F (c)
h = f (c)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus
Suppose c ∈ [a, b), and 0 < h ≤ b − c. Then the integral
segmentation theorem implies that

F (c + h) − F (c) =
∫ c+h

a
f −

∫ c

a
f =

∫ c+h

c
f .

Motivated by the sketch, define
mh = inf

{
f (x) : x ∈ [c, c + h]

}
,

Mh = sup
{

f (x) : x ∈ [c, c + h]
}

.

Then the integral bounds lemma implies

mh · h ≤
∫ c+h

c
f ≤ Mh · h ,

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration IV 64/105

Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus (cont.)
and hence

mh ≤ F (c + h) − F (c)
h ≤ Mh .

This inequality is true for any integrable function. However,
because f is continuous at c, we have

lim
h→0+

mh = f (c) = lim
h→0+

Mh ,

so the squeeze theorem (BS Theorem 4.2.6, p. 114) implies

F ′
+(c) = lim

h→0+

F (c + h) − F (c)
h = f (c) .

A similar argument for c ∈ (a, b] and −(c − a) ≤ h < 0 yields
F ′

−(c) = f (c).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Corollary
If f is continuous on [a, b] and f = g ′ for some function g, then

∫ b

a
f = g(b) − g(a) .

Proof.
Let F (x) =

∫ x

a
f . Then ∀x ∈ [a, b], F ′(x) = f (x) (by FFTC).

=⇒ F ′ = f = g ′.
∴ ∃c ∈ R such that F = g + c (Assignment 1).
∴ F (a) = g(a) + c. But F (a) =

∫ a
a f = 0, so c = − g(a).

∴ F (x) = g(x) − g(a).
This is true, in particular, for x = b, so

∫ b

a
f = g(b) − g(a).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: Fundamental Theorem of Calculus

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)
If f is integrable on [a, b] and f = g ′ for some function g, then

∫ b

a
f = g(b) − g(a) .

Notes:
This looks like the corollary to the first fundamental theorem,
except that f is assumed only to be integrable, not continuous.

Recall from Darboux’s theorem that if f = g ′ for some g then f has
the intermediate value property, but f need not be continuous.

g ′ exists on [a, b] =⇒ applies to g .

The proof of the second fundamental theorem is completely
different from the corollary to the first, because we cannot use the
first fundamental theorem (which assumed f is continuous).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Proof of Second Fundamental Theorem of Calculus
Let P = {t0, . . . , tn} be any partition of [a, b]. By the Mean Value
Theorem, for each i = 1, . . . , n, ∃ xi ∈ [ti−1, ti ] such that

g(ti) − g(ti−1) = g ′(xi)(ti − ti−1) = f (xi)(ti − ti−1) .

Define mi and Mi as usual. Then mi ≤ f (xi) ≤ Mi ∀i , so

mi(ti − ti−1) ≤ f (xi)(ti − ti−1) ≤ Mi(ti − ti−1) ,

i.e., mi(ti − ti−1) ≤ g(ti) − g(ti−1) ≤ Mi(ti − ti−1) .

∴
n∑

i=1
mi(ti − ti−1) ≤

n∑

i=1

(
g(ti) − g(ti−1)

)
≤

n∑

i=1
Mi(ti − ti−1)

i.e., L(f , P) ≤ g(b) − g(a) ≤ U(f , P)

for any partition P. ∴ g(b) − g(a) =
∫ b

a f .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What useful things can we do with integrals?

Compute areas of complicated shapes: find anti-derivatives
and use the second fundamental theorem of calculus.

Define trigonometric functions (rigorously).

Define logarithm and exponential functions (rigorously).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫

M
dω =

∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 11
Integration V

Monday 3 February 2025

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

The participation deadline for Assignment 2 is today, Monday
3 Feb 2025 @ 11:25am.

If you haven’t participated yet, do the poll now.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Last time. . .

Rigorous development of the integral
First Fundamental Theorem of Calculus.

Corollary to FFTC.

Second Fundamental Theorem of Calculus.

What can we do with the integral?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll What is π ?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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What is π ?

f (x) =
√

1 − x2

Area π

2

Definition

π ≡ 2
∫ 1

−1

√
1 − x2 dx .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are cos and sin ?

(x ,
√

1 − x2)

x

Definition (Sectoral area)

If x ∈ [−1, 1] then A(x) = x
√

1 − x2

2 +
∫ 1

x

√
1 − t2 dt .

Note: A(−1) = π/2, A(1) = 0.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are cos and sin ?

θ

(cos θ, sin θ)

x = cos θ

A(x) = θ

2

Length of circular arc swept out by angle θ: θ

Area of sectoral region swept out by angle θ: θ/2
So, if θ ∈ [0, π] then we define cos θ to be the unique number in [−1, 1]
such that A(cos θ) = θ/2, and we define sin θ to be

√
1 − (cos θ)2.

We must prove: given x ∈ [0, π] ∃! y ∈ [−1, 1] such that A(y) = x/2.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are cos and sin ?

Proof that ∀ x ∈ [0, π] ∃! y ∈ [−1, 1] such that A(y) = x/2:
Existence: A(1) = 0, A(−1) = π/2, and A is continuous. Hence by the
intermediate value theorem ∃ y ∈ [−1, 1] such that A(y) = x/2.

Uniqueness: A is differentiable on (−1, 1) and A′(x) < 0 on (−1, 1).
∴ On (−1, 1), A is decreasing, and hence one-to-one.

Definition (cos and sin)
If x ∈ [0, π] then cos x is the unique number in [−1, 1] such that
A(cos x) = x/2, and sin x =

√
1 − (cos x)2.

These definitions are easily extended to all of R:
For x ∈ [π, 2π], define cos x = cos (2π − x) and sin x = − sin (2π − x).
Then, for x ∈ R \ [0, 2π] define cos x = cos (x mod 2π) and
sin x = sin (x mod 2π).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Trigonometric theorems

Given the rigorous definition of cos and sin, we can prove:
1 cos and sin are differentiable on R. Moreover, cos′ = − sin

and sin′ = cos.
2 sec, tan, csc and cot can all be defined in the usual way and

have all the usual properties.
3 The inverse function theorem allows us to define, and compute

the derivatives of, all the inverse trigonometric functions.
4 If f is twice differentiable on R, f ′′ + f = 0, f (0) = a

and f ′(0) = b, then f = a cos + b sin.
5 For all x , y ∈ R,

sin (x + y) = sin x cos y + cos x sin y ,

cos (x + y) = cos x cos y − sin x sin y .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Something deep that you know enough to prove

Extra Challenge Problem:
Prove that π is irrational.
Hint: Suppose π2 = a

b , for a, b ∈ N.
Show that the smallest positive root of sin is irrational.

Hint 2: Consider fn(x) = xn(1−x)n
n! . Show that fn(x) = 1

n!
∑2n

i=n
ci x i , where ci ∈ Z for each

i = n, n + 1, . . . , 2n, and f (k)
n (0), f (k)

n (1) ∈ Z for all k.

Hint 3: Let G(x) = b2
∑n

i=0
(−1)i π2(n−i)f (2i)

n (x). Show G(0), G(1) ∈ Z, and G′′(x) + π2G(x) = π2anfn(x).

Hint 4: Let H(x) = G′(x) sin (πx) − G(x) sin′(πx). Exploiting SFTC, show π
∫ 1

0
H′(x) dx ∈ Z.

Hint 5: Using properties of fn(x), show 0 < π
∫ 1

0
H′(x) dx < 1.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

Consider the function
f (x) = 10x .

What exactly is this function?

In our mathematically näıve previous life, we just assumed that
f (x) is well-defined ∀ x ∈ R, and that f has a well-defined inverse
function,

f −1(x) = log10(x) .

But how are 10x and log10(x) defined for irrational x ?

Let’s review what we know. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

n ∈ N =⇒ 10n = 10 · · · 10︸ ︷︷ ︸
n times

n, m ∈ N =⇒ 10n · 10m = 10n+m

When we extend 10x to x ∈ Q, we want this product rule to be
preserved:

100 · 10n = 100+n = 10n =⇒ 100 = 1

10−n · 10n = 100 = 1 =⇒ 10−n = 1
10n

101/n · · · 101/n
︸ ︷︷ ︸

n times
= 10 1/n···1/n

︸ ︷︷ ︸
n times

= 101 = 10 =⇒ 101/n = n√10

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

Finally, to define 10q for all q ∈ Q, note that we must have
(
10

1
n
)m

= 10
1
n · · · 10

1
n

︸ ︷︷ ︸
m times

= 10
1
n +···+ 1

n
︸ ︷︷ ︸
m times

= 10
m
n =⇒ 10

m
n def=

( n√10
)m

Now we’re stuck. How do we extend this scheme to irrational x?
We need a more sophisticated idea.
Let’s try to find a function on all of R that satisfies

f (x + y) = f (x) · f (y) , ∀x , y ∈ R,

and f (1) = 10 .

It then follows that f (0) = 1 and, ∀ x ∈ Q, f (x) = [f (1)]x .
What additional properties can we impose on f (x) that will lead us
to a sensible definition of f (x) for all x ∈ R ?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫

M
dω =

∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 12
Integration VI

Wednesday 5 February 2025

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 2 solutions are posted.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Last time. . .

Rigorous definition of trig functions.

Working towards rigorous definition of 10x for x ∈ R.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

One approach is to insist that f is differentiable.
Then we can compute

f ′(x) = lim
h→0

f (x + h) − f (x)
h = lim

h→0
f (x) · f (h) − f (x)

h

= f (x) · lim
h→0

f (h) − 1
h = f (x) · f ′(0) ≡ α f (x)

So f ′(x) = α f (x), i.e., we have f ′ in terms of unknowns f and α.
So what?!?
Let’s look at the inverse function, f −1 (think “log10”):

(f −1)′(x) = 1
f ′(f −1(x)) = 1

α f (f −1(x)) = 1
α x

Holy $#@%! We have a simple formula for the derivative of f −1!
Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?
Since we want log10 1 = 0, we should define log10 x as
(1/α)

∫ x
1 t−1 dt. Great idea, but we don’t know what α is.

So, let’s ignore α . . .
(and hope that what we end up with is log to some “natural” base).

Definition (Logarithm function)
If x > 0 then

log x =
∫ x

1

1
t dt .

This function is strictly increasing (log′(x) > 0 for all x > 0) and
hence one-to-one, so we can now define:
Definition (Exponential function)

exp = log−1 .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?
With these rigorous defintions of log and exp, we can prove the
following as theorems:

1 If x , y > 0 then log (xy) = log x + log y .
2 If x , y > 0 then log (x/y) = log x − log y .
3 If n ∈ N and x > 0 then log (xn) = n log x .
4 For all x ∈ R, exp′(x) = exp(x).
5 For all x , y ∈ R, exp(x + y) = exp(x) · exp(y).
6 For all x ∈ Q, exp(x) = [exp(1)]x .

The last theorem above motivates:
Definition

e ≡ exp(1) ,

ex ≡ exp(x) for all x ∈ R.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?
We can now give a rigorous definition of 10x for any x ∈ R.
In fact, we can do this for any a > 0.

Definition (ax )
If a > 0 and x is any real number then

ax ≡ ex log a .

We then have the following theorems for any a > 0:
1 (ax )y = axy for all x , y ∈ R;
2 a0 = 1; a1 = a;
3 ax+y = ax · ay for all x , y ∈ R;
4 a−x = 1/ax for all x ∈ R;
5 if a > 1 then ax is increasing on R;
6 if 0 < a < 1 then ax is decreasing on R.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Using the integral to define useful functions rigorously

Just as we defined 10x via the definition of log x =
∫ x

1
1
t dt, we

could have defined the trigonometric functions starting from

arcsin x =
∫ x

0

1√
1 − t2 dt , − 1 < x < 1,

rather than the definition of cos via A(x). Many common
functions are defined as integrals of rational functions of
square roots.

Any compositions of trig functions, log, exp, rational functions
and radicals, are called elementary functions.

Most functions that turn up a lot in applications can be
defined rigorously via integrals of elementary functions. Such
functions are collectively called special functions.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll What kind of number is e ?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Approximation by Polynomial Functions

Definition (Taylor polynomial)
If f is n times differentiable at a then the Taylor polynomial of
degree n for f at a is

Pn,a(x) = f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n! (x − a)n .

Theorem (Taylor’s theorem)
Suppose f ′, . . . , f (n+1) are defined on [a, x ], and that Rn,a(x) is
defined by f (x) = Pn,a(x) + Rn,a(x) . Then

Rn,a(x) = f (n+1)(ξ)
(n + 1)! (x − a)n+1 , for some ξ ∈ (a, x) . (♡)

Note: The form of the remainder term here is known as the
Lagrange form of the remainder.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Approximation by Polynomial Functions

Proof of Taylor’s Theorem.
Let’s prove this by induction, starting from the base case, n = 0.
For n = 0, the statement of Taylor’s theorem is:

Suppose f ′ is defined on [a, x ], and that R0,a(x) is defined
by f (x) = P0,a(x) + R0,a(x) . Then

R0,a(x) = f ′(ξ)(x − a) , for some ξ ∈ (a, x) .

But P0,a(x) = f (a), so the claim for n = 0 is that

f (x) = f (a) + f ′(ξ)(x − a) , for some ξ ∈ (a, x) .

Thus, for n = 0, Taylor’s Theorem reduces to the Mean Value
Theorem! So the base case (n = 0) is true.

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Approximation by Polynomial Functions

Proof of Taylor’s Theorem.
Now suppose n ≥ 1. By the induction hypothesis, we have

Rn−1,a(x) = f (n)(ξ)
n! (x − a)n , for some ξ ∈ (a, x) .

From this, how can we infer something related to (♡)? By definition,

f (x) = Pn,a(x) + Rn,a(x) = Pn−1,a(x) + f (n)(a)
n! (x − a)n + Rn,a(x)

=
[
Pn−1,a(x) + Rn−1,a(x)

]
+ f (n)(a)

n! (x − a)n +
[
Rn,a(x) − Rn−1,a(x)

]

∴ 0 = f (n)(a)
n! (x − a)n + Rn,a(x) − Rn−1,a(x)

= f (n)(a)
n! (x − a)n + Rn,a(x) − f (n)(ξ)

n! (x − a)n , for some ξ ∈ (a, x) .

Thus, Rn,a(x) =
[

f (n)(ξ)
n! − f (n)(a)

n!

]
(x − a)n, so Rn,a(a) = 0.

In fact, R(k)
n,a (a) = 0 ∀k = 0, 1, . . . , n − 1. . . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Approximation by Polynomial Functions

Proof of Taylor’s Theorem.
Now, since a < x , proving (♡) is equivalent to proving

Rn,a(x)
(x − a)n+1 = f (n+1)(ξ)

(n + 1)! , for some ξ ∈ (a, x) . (♠)

To make the notation less cumbersome, write G(x) = (x − a)n (and note
that G (k)(a) = 0 ∀k = 0, 1, . . . , n − 1).
Then, for any x > a, we have

Rn,a(x)
G(x) = Rn,a(x) − Rn,a(a)

G(x) − G(a) =
R ′

n,a(ξ1)
G ′(ξ1) ∃ξ1 ∈ (a, x)

by Cauchy MVT (proved in Assignment 1). Similarly,
R ′

n,a(ξ1)
G ′(ξ1) =

R ′
n,a(ξ1) − R ′

n,a(a)
G ′(ξ1) − G ′(a) =

R ′′
n,a(ξ2)

G ′′(ξ2) ∃ξ2 ∈ (a, ξ1) ⊂ (a, x)

= · · · = R(n+1)
n,a (ξn+1)

G (n+1)(ξn+1) ∃ξn+1 ∈ (a, ξn) ⊂ (a, x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Approximation by Polynomial Functions

Proof of Taylor’s Theorem.
But

R(n+1)
n,a (x) = d

dxn+1

(
Rn,a(x)

)
= d

dxn+1

(
f (x)−Pn,a(x)

)
=

(
f (n+1)(x)−0

)

and
G (n+1)(x) = d

dxn+1

(
(x − a)n+1

)
= (n + 1)!

Therefore,
Rn,a(x)

(x − a)n+1 = R(n+1)
n,a (ξ)

G (n+1)(ξ) = f (n+1)(ξ)
(n + 1)! ∃ξ ∈ (a, x) ,

which verifies (♡), as required.

Note: From Taylor’s theorem with a = 0 and f = exp, it follows that
ex = 1 + x + x2

2! + · · · + xn

n! + Rn(x), where Rn(x) = et

(n + 1)! for some
t ∈ (0, x).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Solutions to Assignment 2 are posted.

You should have received feedback on submissions for
Assignment 1, via crowdmark.

Remember that there are no marks for these submissions.
They are for feedback only.

Do not be alarmed by a grade of “0”. Crowdmark requires a
total score. Your mark is 0/0 (only in a math course. . . ).

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Last time. . .

Rigorous definition of log and exp functions.

Definition of e and ex .

Taylor’s theorem.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of e

Example (A crude upper bound for e)
Prove that e < 4.
Recall that by definition e = exp(1), and exp = log−1, so we know
that log(e) = log(exp(1)) = 1. Also, log is an increasing function,
so e < 4 ⇐⇒ log e < log 4 ⇐⇒ 1 < log 4.
So let’s prove log 4 > 1. To that end, recall that, by definition,
log x =

∫ x
1

dt
t , so we can bound log 4 from below with any lower

sum of 1
t on the interval [1, 4]. In particular, consider the partition

of [1, 4] given by P = {1, 2, 4}. Then

log 4 =
∫ 4

1

dt
t

> L
(1

t , {1, 2, 4}
)

= 1
2(2 − 1) + 1

4(4 − 2) = 1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of e

Example (A crude lower bound for e)
Prove that e > 2.
We could approach this like our proof that e < 4, and show
log 2 < 1 using an upper sum of 1

t .
Let’s instead exploit Taylor’s theorem.
Since e = exp(1), we have

e = 1 + 1 + 1
2! + · · · + 1

n! + Rn , (♢)

where Rn = et
(n+1)! for some t ∈ (0, 1). But each term in (♢),

including Rn, is positive. Therefore, e > 1 + 1 = 2. In fact, it is
easy to get much sharper lower bounds on e by computing more
terms of the Taylor series.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of e

Example (Approximating e)
Use Taylor’s theorem to show that e can be approximated to
within 3

(n+1)! for any given n. Also show that e < 3.

We know that ex is increasing on (0, 1), since exp′(x) = exp(x) > 0 ∀x .
Therefore, since e0 = 1 and e1 = e, if 0 < t < 1 then 1 < et < e.
Consequently, since we found that the remainder term in the series for e
is Rn = et

(n+1)! for some t ∈ (0, 1), it follows that
1

(n + 1)! < Rn <
e

(n + 1)! .

Of course, we can’t estimate e using e. But we know e < 4 (from the
previous example), and hence

1
(n + 1)! < Rn <

4
(n + 1)! .

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of e

Example (Approximating e (cont.))
Given 1

(n+1)! < Rn < 4
(n+1)! , note that for n = 4 we have

1
120 = 1

5! < Rn <
4
5! = 1

30 ,

so applying Taylor’s theorem with n = 4 we get

e = 1 + 1 + 1
2! + 1

3! + 1
4! + Rn =

(
2 + 17

24
)

+ Rn

<
(
2 + 17

24
)

+ 1
30 < 3 .

Thus e < 3, and consequently

Rn <
e

(n + 1)! =⇒ Rn <
3

(n + 1)! .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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e is irrational

Theorem (e is irrational)
∄ k, m ∈ N such that e = k/m.

Proof.
Suppose e = k/m with k, m ∈ N. Then, for any n ∈ N, we have

k
m = e1 = 1 + 1 + 1

2! + · · · + 1
n! + Rn , 0 < Rn <

3
(n + 1)! .

∴
n!k
m = n! + n! + n!

2! + · · · + n!
n! + n!Rn , n ∈ N.

This is true, in particular, for n > 3 and n > m, in which case every term
in this equation other than n!Rn is an integer. So n!Rn is also an integer!
But 0 < Rn < 3/(n + 1)!, so since n > 3 we have

0 < n!Rn <
3

n + 1 <
3
4 < 1,

which is impossible for an integer. Therefore, e is irrational!
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Another challenge. . .

Extra Challenge Problem:
Prove that e is transcendental.
Hint: Proving e is irrational is equivalent to poving that e is not
the solution of any equation of the form a1x + a0 = 0 for any
integers a0, a1. Begin by trying to prove that e is not the solution
of any quadratic equation, a2x2 + a1x + a0 = 0, for integers
a0, a1, a2.

Instructor: David Earn Mathematics 3A03 Real Analysis I


