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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 6: Sequence convergence

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Announcements

Assignment 1 is due via crowdmark 5 minutes before class on
Monday.

Consider writing the Putnam competition.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://ms.mcmaster.ca/~bradd/putnam.html
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Sequences

A sequence is a list that goes on forever.

There is a beginning (a “first term”) but no end, e.g.,

1
1 ,

1
2 ,

1
3 ,

1
4 , . . . ,

1
n , . . .

We use the natural numbers N to label the terms of a
sequence:

a1, a2, a3, . . . , an, . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Formal definition of a sequence

Definition (Sequence of Real Numbers)
A sequence of real numbers is a function

f : N→ R .

A lot of different notation is common for sequences:

f (1), f (2), f (3), . . . {f (n)}∞n=1

f1, f2, f3, . . . {f (n)}
{f (n) : n = 1, 2, 3, . . .} {fn}∞n=1

{f (n) : n ∈ N} {fn}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Specifying sequences

There are two main ways to specify a sequence:

1. Direct formula.
Specify f (n) for each n ∈ N.

Example (arithmetic progression with common difference d)
Sequence is:

c, c + d , c + 2d , c + 3d , . . .

∴ f (n) = c + (n − 1)d , n ∈ N

i.e., xn = c + (n − 1)d , n = 1, 2, 3, . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Specifying sequences

2. Recursive formula.
Specify first term and function f (x) to iterate.

i.e., Given x1 and f (x), we have xn = f (xn−1) for all n > 1.

x2 = f (x1), x3 = f (f (x1)), x4 = f (f (f (x1))), . . .

Example (arithmetic progression with common difference d)

x1 = c, f (x) = x + d

∴ xn = xn−1 + d , n = 2, 3, 4, . . .

Note: f is the most typical function name for both the direct and
recursive specifications. The correct interpretation of f should be
clear from context.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Specifying sequences

Example (geometric progression with common ratio r)
Sequence is: c, cr , cr2, cr3, . . .

Direct formula: xn = f (n) = crn−1, n = 1, 2, 3, . . .

Recursive formula: x1 = c, f (x) = rx , xn = f (xn−1)
Number line representation of {xn} with c = 1 and r = 3

4 :

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Graph of f (n):

5 10 15 20

0.0
0.2
0.4
0.6
0.8
1.0

xn

n
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Specifying sequences

Example (f (n) = 1 + 1
n2 )

Sequence is: 2, 5
4 , 10

9
17
16 , . . .

Direct formula: xn = f (n) = 1 + 1
n2 , n = 1, 2, 3, . . .

Recursive formula: x1 = 2, f (x) = 1 + [1 + (x − 1)−1/2]−2

Get this formula by solving for n in terms of x in
x = 1 + 1/(n − 1)2 (= xn−1).

Such an inversion will NOT always be possible.
Number line representation of {xn}:

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Graph of f (n):

5 10 15 20

1.0
1.2
1.4
1.6
1.8
2.0

xn

n

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Convergence of sequences

We know from previous experience that:
crn−1 → 0 as n→∞ (if |r | < 1).

1 + 1
n2 → 1 as n→∞.

How do we make our intuitive notion of convergence
mathematically rigorous?

Informal definition: “xn → L as n→∞” means “we can make the
difference between xn and L as small as we like by choosing n big
enough”.

More careful informal definition: “xn → L as n→∞” means
“given any error tolerance, say ε, we can make the distance
between xn and L smaller than ε by choosing n big enough”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Convergence of sequences

Definition (Limit of a sequence)
A sequence {sn} converges to L if, given any ε > 0 there is some
integer N such that

if n ≥ N then |sn − L| < ε .

In this case, we write lim
n→∞

sn = L or sn → L as n→∞
and we say that L is the limit of the sequence {sn}.

Note: To use this definition to prove that the limit of a sequence is
L, we start by imagining that we are given some error tolerance
ε > 0. Then we have to find a suitable N, which will depend on ε.
This means that the N that we find will be a function of ε.
Shorthand:
lim

n→∞
sn = L def= ∀ε > 0 ∃N ∈ N )– n ≥ N =⇒ |sn − L| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Convergence of sequences

Convergence terminology:

A sequence that converges is said to be convergent.

A sequence that is not convergent is said to be divergent.

Remark (Sequences in spaces other than R)
The formal definition of a limit of a sequence works in any space
where we have a notion of distance if we replace |sn − L| with
d(sn, L).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Convergence of sequences

Example
Use the formal definition of a limit of a sequence to prove that

n2 + 1
n2 → 1 as n→∞ .

(solution on board)

Note: Our strategy here was to solve for n in the inequality
|sn − L| < ε. From this we were able to infer how big N has to be
in order to ensure that |sn − L| < ε for all n ≥ N. That much was
“rough work”. Only after this rough work did we have enough
information to be able to write down a rigorous proof.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Convergence of sequences

Example
Use the formal definition of a limit of a sequence to prove that

n5 − n3 + 1
n8 − n5 + n + 1 → 0 as n→∞ .

(solution on board)

Note: In this example, it was not possible to solve for n in the
inequality |sn − L| < ε. Instead, we first needed to bound |sn − L|
by a much simpler expression that is always greater than |sn − L|.
If that bound is less than ε then so is |sn − L|.

Instructor: David Earn Mathematics 3A03 Real Analysis I


