

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 6 Sequences Friday 13 September 2019

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 6: Sequence convergence

Submit.

- Assignment 1 is due via crowdmark 5 minutes before class on Monday.
- Consider writing the Putnam competition.

- A *sequence* is a list that goes on forever.
- There is a beginning (a "first term") but no end, e.g.,

$$\frac{1}{1}, \ \frac{1}{2}, \ \frac{1}{3}, \ \frac{1}{4}, \ \dots, \ \frac{1}{n}, \ \dots$$

■ We use the natural numbers N to label the terms of a sequence:

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

Formal definition of a sequence

Definition (Sequence of Real Numbers)

A sequence of real numbers is a function

 $f:\mathbb{N}\to\mathbb{R}$.

A lot of different notation is common for sequences:

$f(1), f(2), f(3), \ldots$	$\{f(n)\}_{n=1}^{\infty}$
f_1, f_2, f_3, \ldots	${f(n)}$
$\{f(n): n = 1, 2, 3, \ldots\}$	$\{f_n\}_{n=1}^\infty$
$\{f(n):n\in\mathbb{N}\}$	$\{f_n\}$

There are two main ways to specify a sequence:

1. Direct formula.

Specify f(n) for each $n \in \mathbb{N}$.

Example (arithmetic progression with common difference d)

Sequence is:

$$c, c + d, c + 2d, c + 3d, ...$$

∴ $f(n) = c + (n - 1)d, n \in \mathbb{N}$
i.e., $x_n = c + (n - 1)d, n = 1, 2, 3, ...$

Specifying sequence

Specifying sequences

2. Recursive formula.

Specify first term and function f(x) to *iterate*.

i.e., Given x_1 and f(x), we have $x_n = f(x_{n-1})$ for all n > 1.

$$x_2 = f(x_1), \quad x_3 = f(f(x_1)), \quad x_4 = f(f(f(x_1))), \quad \dots$$

Example (arithmetic progression with common difference d)

$$x_1 = c, \quad f(x) = x + d$$

$$\therefore x_n = x_{n-1} + d, \qquad n = 2, 3, 4, \dots$$

<u>Note</u>: f is the most typical function name for both the direct and recursive specifications. The correct interpretation of f should be clear from context.

Specifying sequences

Example (geometric progression with common ratio r)

Specifying sequences

Example $(f(n) = 1 + \frac{1}{n^2})$

Sequence is: 2, $\frac{5}{4}$, $\frac{10}{9}$, $\frac{17}{16}$, ... Direct formula: $x_n = f(n) = 1 + \frac{1}{n^2}$, n = 1, 2, 3, ...Recursive formula: $x_1 = 2$, $f(x) = 1 + [1 + (x - 1)^{-1/2}]^{-2}$ Get this formula by solving for n in terms of x in $x = 1 + 1/(n-1)^2$ (= x_{n-1}). Such an inversion will NOT always be possible. Number line representation of $\{x_n\}$: 1.1 1.2 13 1.4 1.5 1.6 1.7 1.8 1.9 2 Graph of f(n): 2.0 Xn 1.4 -1.2 10 n 5 10 15 20 Instructor: David Earn

We know from previous experience that:

•
$$cr^{n-1} \rightarrow 0$$
 as $n \rightarrow \infty$ (if $|r| < 1$).

•
$$1+\frac{1}{n^2} \to 1$$
 as $n \to \infty$.

How do we make our intuitive notion of *convergence mathematically rigorous*?

<u>Informal definition</u>: " $x_n \to L$ as $n \to \infty$ " means "we can make the difference between x_n and L as small as we like by choosing n big enough".

<u>More careful informal definition</u>: " $x_n \to L$ as $n \to \infty$ " means "given any *error tolerance*, say ε , we can make the distance between x_n and L smaller than ε by choosing n big enough".

Definition (Limit of a sequence)

A sequence $\{s_n\}$ converges to L if, given any $\varepsilon > 0$ there is some integer N such that

 $\text{if } n \geq N \qquad \text{then} \qquad |s_n - L| < \varepsilon \,.$

In this case, we write $\lim_{n\to\infty} s_n = L$ or $s_n \to L$ as $n \to \infty$ and we say that L is the *limit* of the sequence $\{s_n\}$.

<u>Note</u>: To use this definition to prove that the limit of a sequence is L, we start by imagining that we are given some error tolerance $\varepsilon > 0$. Then we have to find a suitable N, which will depend on ε . This means that the N that we find will be a function of ε .

Shorthand:

 $\lim_{n\to\infty} s_n = L \quad \stackrel{\text{def}}{=} \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \} \quad n \ge N \implies |s_n - L| < \varepsilon.$

Convergence terminology:

- A sequence that converges is said to be *convergent*.
- A sequence that is <u>not convergent</u> is said to be *divergent*.

Remark (Sequences in spaces other than \mathbb{R})

The formal definition of a limit of a sequence works in any space where we have a notion of distance if we replace $|s_n - L|$ with $d(s_n, L)$.

Example

Use the formal definition of a limit of a sequence to prove that

$$rac{n^2+1}{n^2} o 1$$
 as $n o \infty$.

(solution on board)

<u>Note</u>: Our strategy here was to solve for n in the inequality $|s_n - L| < \varepsilon$. From this we were able to infer how big N has to be in order to ensure that $|s_n - L| < \varepsilon$ for all $n \ge N$. That much was "rough work". Only after this rough work did we have enough information to be able to write down a rigorous proof.

Example

Use the formal definition of a limit of a sequence to prove that

$$rac{n^5-n^3+1}{n^8-n^5+n+1} o 0 \quad ext{as} \quad n o \infty \,.$$

(solution on board)

<u>Note</u>: In this example, it was not possible to solve for n in the inequality $|s_n - L| < \varepsilon$. Instead, we first needed to bound $|s_n - L|$ by a much simpler expression that is always greater than $|s_n - L|$. If that bound is less than ε then so is $|s_n - L|$.