6 Sequences

McMaster University

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 6
Sequences
Friday 13 September 2019

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 6: Sequence convergence

- Submit.

Announcements

- Assignment 1 is due via crowdmark 5 minutes before class on Monday.
- Consider writing the Putnam competition.

Sequences

- A sequence is a list that goes on forever.

■ There is a beginning (a "first term") but no end, e.g.,

$$
\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots
$$

■ We use the natural numbers \mathbb{N} to label the terms of a sequence:

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

Formal definition of a sequence

Definition (Sequence of Real Numbers)

A sequence of real numbers is a function

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

A lot of different notation is common for sequences:

$$
\begin{array}{ll}
f(1), f(2), f(3), \ldots & \{f(n)\}_{n=1}^{\infty} \\
f_{1}, f_{2}, f_{3}, \ldots & \{f(n)\} \\
\{f(n): n=1,2,3, \ldots\} & \left\{f_{n}\right\}_{n=1}^{\infty} \\
\{f(n): n \in \mathbb{N}\} & \left\{f_{n}\right\}
\end{array}
$$

Specifying sequences

There are two main ways to specify a sequence:

1. Direct formula.

Specify $f(n)$ for each $n \in \mathbb{N}$.
Example (arithmetic progression with common difference d)
Sequence is:

$$
\begin{gathered}
c, c+d, c+2 d, c+3 d, \ldots \\
\therefore f(n)=c+(n-1) d, \quad n \in \mathbb{N} \\
\text { i.e., } \quad x_{n}=c+(n-1) d, \quad n=1,2,3, \ldots
\end{gathered}
$$

Specifying sequences

2. Recursive formula.

Specify first term and function $f(x)$ to iterate.
i.e., Given x_{1} and $f(x)$, we have $x_{n}=f\left(x_{n-1}\right)$ for all $n>1$.

$$
x_{2}=f\left(x_{1}\right), \quad x_{3}=f\left(f\left(x_{1}\right)\right), \quad x_{4}=f\left(f\left(f\left(x_{1}\right)\right)\right), \quad \ldots
$$

Example (arithmetic progression with common difference d)

$$
\begin{gathered}
x_{1}=c, \quad f(x)=x+d \\
\therefore \quad x_{n}=x_{n-1}+d, \quad n=2,3,4, \ldots
\end{gathered}
$$

Note: f is the most typical function name for both the direct and recursive specifications. The correct interpretation of f should be clear from context.

Specifying sequences

Example (geometric progression with common ratio r)

Sequence is: $c, c r, c r^{2}, c r^{3}, \ldots$
Direct formula: $x_{n}=f(n)=c r^{n-1}, n=1,2,3, \ldots$
Recursive formula: $x_{1}=c, f(x)=r x, x_{n}=f\left(x_{n-1}\right)$
Number line representation of $\left\{x_{n}\right\}$ with $c=1$ and $r=\frac{3}{4}$:

Graph of $f(n)$:

Specifying sequences

Example $\left(f(n)=1+\frac{1}{n^{2}}\right)$
Sequence is: $2, \frac{5}{4}, \frac{10}{9} \frac{17}{16}, \ldots$
Direct formula: $x_{n}=f(n)=1+\frac{1}{n^{2}}, n=1,2,3, \ldots$
Recursive formula: $x_{1}=2, \quad f(x)=1+\left[1+(x-1)^{-1 / 2}\right]^{-2}$
Get this formula by solving for n in terms of x in

$$
x=1+1 /(n-1)^{2} \quad\left(=x_{n-1}\right)
$$

Such an inversion will NOT always be possible.
Number line representation of $\left\{x_{n}\right\}$:

Graph of $f(n)$:

Convergence of sequences

We know from previous experience that:
$■ c r^{n-1} \rightarrow 0$ as $n \rightarrow \infty \quad($ if $|r|<1)$.
$■ 1+\frac{1}{n^{2}} \rightarrow 1$ as $n \rightarrow \infty$.
How do we make our intuitive notion of convergence mathematically rigorous?

Informal definition: " $x_{n} \rightarrow L$ as $n \rightarrow \infty$ " means "we can make the difference between x_{n} and L as small as we like by choosing n big enough".

More careful informal definition: " $x_{n} \rightarrow L$ as $n \rightarrow \infty$ " means "given any error tolerance, say ε, we can make the distance between x_{n} and L smaller than ε by choosing n big enough".

Convergence of sequences

Definition (Limit of a sequence)

A sequence $\left\{s_{n}\right\}$ converges to L if, given any $\varepsilon>0$ there is some integer N such that

$$
\text { if } n \geq N \quad \text { then } \quad\left|s_{n}-L\right|<\varepsilon
$$

In this case, we write $\lim _{n \rightarrow \infty} s_{n}=L$ or $s_{n} \rightarrow L$ as $n \rightarrow \infty$ and we say that L is the limit of the sequence $\left\{s_{n}\right\}$.

Note: To use this definition to prove that the limit of a sequence is L, we start by imagining that we are given some error tolerance $\varepsilon>0$. Then we have to find a suitable N, which will depend on ε. This means that the N that we find will be a function of ε.

Shorthand:

$$
\lim _{n \rightarrow \infty} s_{n}=L \stackrel{\text { def }}{=} \forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \gamma \quad n \geq N \Longrightarrow\left|s_{n}-L\right|<\varepsilon
$$

Convergence of sequences

Convergence terminology:

- A sequence that converges is said to be convergent.

■ A sequence that is not convergent is said to be divergent.

Remark (Sequences in spaces other than \mathbb{R})
The formal definition of a limit of a sequence works in any space where we have a notion of distance if we replace $\left|s_{n}-L\right|$ with $d\left(s_{n}, L\right)$.

Convergence of sequences

Example

Use the formal definition of a limit of a sequence to prove that

$$
\frac{n^{2}+1}{n^{2}} \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
$$

(solution on board)
Note: Our strategy here was to solve for n in the inequality $\left|s_{n}-L\right|<\varepsilon$. From this we were able to infer how big N has to be in order to ensure that $\left|s_{n}-L\right|<\varepsilon$ for all $n \geq N$. That much was "rough work". Only after this rough work did we have enough information to be able to write down a rigorous proof.

Convergence of sequences

Example

Use the formal definition of a limit of a sequence to prove that

$$
\frac{n^{5}-n^{3}+1}{n^{8}-n^{5}+n+1} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(solution on board)
Note: In this example, it was not possible to solve for n in the inequality $\left|s_{n}-L\right|<\varepsilon$. Instead, we first needed to bound $\left|s_{n}-L\right|$ by a much simpler expression that is always greater than $\left|s_{n}-L\right|$. If that bound is less than ε then so is $\left|s_{n}-L\right|$.

