

[Differentiation II](#page-19-0)

[Differentiation III](#page-32-0)

[Differentiation IV](#page-46-0)

Differentiation

Mathematics and Statistics M $d\omega =$ *∂*M *ω*

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 2 Differentiation Wednesday 8 January 2025

Instructor: David Earn [Mathematics 3A03 Real Analysis I](#page-0-0)

Survey to do right now

■ Please go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- **Fill in poll Survey 2**

Results of Survey 1

Results of Survey 2

Background / reminder

Definition (Cauchy sequence)

A sequence $\{s_n\}$ is said to be a **Cauchy sequence** iff for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $m \geq N$ and $n \geq N$ then $|s_n - s_m| < \varepsilon$.

Poll: another background check

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Background: Cauchy sequences**

\blacksquare Submit.

Definition (Derivative)

Let f be defined on an interval I and let $x_0 \in I$. The *derivative* of f at x_0 , denoted by $f'(x_0)$, is defined as

$$
f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},
$$

provided either that this limit exists or is infinite. If $f'(x_0)$ is finite we say that f is **differentiable** at x_0 . If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a **differentiable function**.

Note: "Differentiable" and "a derivative exists" always mean that the derivative is finite.

Example

$$
f(x) = x^2
$$
. Find $f'(2)$.

$$
f'(2) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4
$$

Note:

- In the first two limits, we must have $x \neq 2$.
- But in the third limit, we just plug in $x = 2$.
- Two things are equal, but in one $x \neq 2$ and in the other $x = 2$.
- Good illustration of why it is important to define the meaning of limits rigorously.

■ Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Derivatives: Differentiable at 0**

\blacksquare Submit.

Example

Let f be defined in a neighbourhood I of 0, and suppose $|f(x)| \leq x^2$ for all $x \in I$. Is f necessarily differentiable at 0? e.g.,

Example (Trapping principle)

Suppose
$$
f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}
$$
 Then:

$$
\forall x \neq 0: \quad \left| \frac{f(x) - f(0)}{x - 0} \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{x^2 \sin \frac{1}{x^2}}{x} \right| = \left| x \sin \frac{1}{x^2} \right| \leq |x|
$$

Therefore:

$$
|f'(0)| = \left|\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}\right| = \lim_{x \to 0} \left|\frac{f(x) - f(0)}{x - 0}\right| \le \lim_{x \to 0} |x| = 0.
$$

∴ f is differentiable at 0 and $f'(0) = 0$.

Г

Definition (One-sided derivatives)

Let f be defined on an interval I and let $x_0 \in I$. The **right-hand** *derivative* of f at x_0 , denoted by $f'_{+}(x_0)$, is the limit

$$
f'_{+}(x_0)=\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0},
$$

provided either that this one-sided limit exists or is infinite. Similarly, the *left-hand derivative* of f at x_0 , denoted by $f'_{-}(x_0)$, is the limit

$$
f'_{-}(x_0)=\lim_{x\to x_0^{-}}\frac{f(x)-f(x_0)}{x-x_0}.
$$

Note: If x_0 is not an endpoint of the interval *I* then *f* is differentiable at x_0 iff $f'_{+}(x_0) = f'_{-}(x_0) \neq \pm \infty$.

Example

 \blacksquare Higher derivatives: we write

- $f'' = (f')'$ if f' is differentiable;
- $f^{(n+1)} = (f^{(n)})'$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$
\frac{df}{dx} = f'(x)
$$

$$
D = \frac{d}{dx}
$$

$$
D^{n}f(x) = \frac{d^{n}f}{dx^{n}} = f^{(n)}(x)
$$

REMINDER: Algebra of limits

Theorem (Algebraic operations on limits of sequences)

Suppose $\{s_n\}$ and $\{t_n\}$ are [convergent sequences](#page-0-1) and $C \in \mathbb{R}$.

1
$$
\lim_{n\to\infty} C s_n = C(\lim_{n\to\infty} s_n)
$$
;

$$
\mathbf{E} \lim_{n \to \infty} (s_n + t_n) = (\lim_{n \to \infty} s_n) + (\lim_{n \to \infty} t_n) ;
$$

$$
\lim_{n\to\infty}(s_n-t_n)=(\lim_{n\to\infty}s_n)-(\lim_{n\to\infty}t_n)
$$
;

$$
\lim_{n\to\infty}(s_nt_n)=(\lim_{n\to\infty}s_n)(\lim_{n\to\infty}t_n) ;
$$

5 if
$$
t_n \neq 0
$$
 for all *n* and $\lim_{n \to \infty} t_n \neq 0$ then
\n
$$
\lim_{n \to \infty} \left(\frac{s_n}{t_n} \right) = \frac{\lim_{n \to \infty} s_n}{\lim_{n \to \infty} t_n}.
$$

(TBB [§2.7, and problem 2.7.4\)](#page-73-0)

REMINDER: Algebra of limits

Theorem (Algebraic operations on limits of functions)

Suppose $f, g : \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$, the limits as $x \to x_0$ of $f(x)$ and $g(x)$ both exist, and $C \in \mathbb{R}$.

$$
\lim_{x\to x_0} C f(x) = C \left(\lim_{x\to x_0} f(x)\right) ;
$$

$$
\mathbf{E} \lim_{x \to x_0} (f(x) + g(x)) = (\lim_{x \to x_0} f(x)) + (\lim_{x \to x_0} g(x)) ;
$$

$$
\lim_{x\to x_0} (f(x)-g(x)) = (\lim_{x\to x_0} f(x)) - (\lim_{x\to x_0} g(x)) ;
$$

$$
\lim_{x\to x_0} (f(x)g(x)) = (\lim_{x\to x_0} f(x)) (\lim_{x\to x_0} g(x)) ;
$$

a if
$$
g(x) \neq 0
$$
 for $x \in (x_0 - \delta, x_0 + \delta)$ for some $\delta > 0$, and
\n
$$
\lim_{x \to x_0} g(x) \neq 0
$$
 then
$$
\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}
$$
.

Theorem (Differentiable \implies continuous)

If f is defined in a neighbourhood I of x_0 and f is differentiable at x_0 then f is continuous at x_0 .

Proof.

Must show
$$
\lim_{x \to x_0} f(x) = f(x_0),
$$
 i.e., $\lim_{x \to x_0} (f(x) - f(x_0)) = 0.$

\n
$$
\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \times (x - x_0) \right)
$$
\n
$$
= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right) \times \lim_{x \to x_0} (x - x_0)
$$
\n
$$
= f'(x_0) \times 0 = 0,
$$

where we have used the theorem on the algebra of limits.

Mathematics and Statistics M $d\omega =$ *∂*M *ω*

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 3 Differentiation II Friday 10 January 2025

- **EXECT** Lectures are being live streamed and recorded as of today.
- Recordings will be available 24 hours after lectures.
	- Go to <https://echo360.ca>.
	- Sign in with your macID@mcmaster.ca e-mail address.
	- Click on the Courses tab.
	- Select "MATH 3A03 WINTER 2025"
- Course evaluation scheme has changed (next two slides).
	- The [course web site](https://davidearn.github.io/math3a/) and [online syllabus](https://mcmaster.simplesyllabusca.com/en-US/doc/cfr7a1cxn/Winter-2025-MATH-3A03-C01-EARN-) have not yet been updated to reflect these changes, but that will happen soon (hopefully over the weekend).

Course evaluation will be revised as follows:

- We will not have quizzes
- \blacksquare 5% for participating in at least 80% of in-class polls
- \blacksquare 15% for participating in assignments, based on multiple choice (MC) questions:

 $\mathsf{assignment}\ \mathsf{mark} = \frac{\mathsf{number}\ \mathsf{MC}\ \mathsf{questions}\ \mathsf{answered}}{\mathsf{total}\ \mathsf{number}\ \mathsf{MC}\ \mathsf{questions}\ \mathsf{assigned}}$

- 30% for midterm test on Thurs 27 Feb 2025
- 50% for final exam in April
- \blacksquare Note: If your final exam mark is better than your midterm test mark then the final exam mark will replace the midterm test mark.
- Important: Do NOT skip the midterm. Even if you don't feel well prepared, write it for practice so you are better prepared for writing the final exam.
- If you must miss the midterm (e.g., illness or accepting a Nobel prize), your final exam mark will replace it.

Tentative plan for assignments

- \blacksquare There will be regular assignments.
- Each question will have a multiple choice component (probably on [childsmath](https://www.childsmath.ca/childsa/forms/main_login.php)). Only participation counts for marks; you will get the same credit for correct and incorrect answers, or for selecting "I haven't had time to think about this yet".
- Optionally, full solutions/proofs can be written up and submitted on [crowdmark](https://crowdmark.com/). Feedback will be given, but no marks. The purpose is to help you prepare better for the test and exam.
- If you're not sure if your proof is complete, or you got stuck and don't know how to complete it, make that clear in the document that you submit on [crowdmark](https://crowdmark.com/), so the TA can focus on the help you need.
- **Always try your best to solve problems on your own first. But if you** used stackexchange or ChatGPT or whatever for help, provide a URL to your source if possible, so it is easier for the TA to provide the help you need.
- Make the best possible use of the TA's time: say what you think you do or don't understand.

Last time...

- Definition of the [derivative.](#page-8-0)
	- **[Example: Trapping Principle](#page-12-0)**
- **Defined [one-sided derivatives](#page-13-0) [Example](#page-14-0)**
- Proved differentiable \implies continuous.

More on the derivative

Theorem (Algebra of derivatives)

Suppose f and g are defined on an interval I and $x_0 \in I$. If f and g are differentiable at x_0 then $f + g$ and fg are differentiable at x_0 . If, in addition, $g(x_0) \neq 0$ then f/g is differentiable at x_0 . Under these conditions:

$$
\Box (cf)'(x_0) = cf'(x_0) \text{ for all } c \in \mathbb{R};
$$

2
$$
(f+g)'(x_0) = (f'+g')(x_0);
$$

3
$$
(fg)'(x_0) = (f'g + fg')(x_0);
$$

$$
\mathbf{I} \left(\frac{f}{g}\right)'(x_0) = \left(\frac{gf'-fg'}{g^2}\right)(x_0) \qquad (g(x_0) \neq 0).
$$

(TBB [Theorem 7.7, p. 408\)](#page-429-0)

Theorem (Chain rule)

Suppose f is defined in a neighbourhood U of x_0 and g is defined in a neighbourhood V of $f(x_0)$ such that $f(U) \subseteq V$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$ then the composite function $h = g \circ f$ is differentiable at x_0 and

$$
h'(x_0)=(g\circ f)'(x_0)=g'(f(x_0))f'(x_0).
$$

Informally, if $y = f(x)$ and $z = g(y)$ then $\frac{dz}{dx} = \frac{dz}{dy}$ dy dy $\frac{dy}{dx}$.

(TBB [§7.3.2, p. 411\)](#page-432-0)

Why the chain rule is plausible

The derivative of $g \circ f$ at x_0 is the limit as $x \to x_0$ of the difference quotient

$$
\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0} \quad (*)
$$

Recall:
$$
f'(x_0)
$$
 exists $\implies f$ continuous at x_0
 $\implies f(x) \to f(x_0)$ as $x \to x_0$.

Can we take the limit as $x \to x_0$ and conclude that $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$?

- What if $f(x) = 0$ for all x?
- What if f is a constant function?
- What if $f(x) = f(x_0)$ for some $x \neq x_0$?
- Can we use (♦) to prove the chain rule?

Poll

■ Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Derivatives: Chain Rule**

\blacksquare Submit.

REMINDER: limits of functions

Theorem (Equivalence of *ε*-*δ* and sequence definitions of limits)

Let $a < x_0 < b$, $I = (a, b)$, and $f : I \setminus \{x_0\} \to \mathbb{R}$. Then the following two definitions of

$$
\lim_{x\to x_0}f(x)=L
$$

are equivalent:

- **1** for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x x_0| < \delta$ then $|f(x) - L| < \varepsilon$.
- **2** for every sequence $\{x_n\}$ of points in $I \setminus \{x_0\}$,

$$
\lim_{n\to\infty}x_n=x_0\quad\Longrightarrow\quad \lim_{n\to\infty}f(x_n)=L.
$$

Note: The deleted neighbourhood $(I \setminus \{x_0\})$ can be replaced by any set on which f is defined and x_0 is an accumulation point.

Proof of the chain rule.

- **1** Suppose there is an open interval *I*, with $x_0 \in I$, and $f(x) \neq f(x_0)$ for all $x \in I \setminus \{x_0\}$. Then we can take the limit $x \to x_0$ in (\spadesuit) and we get the [chain rule.](#page-25-0)
- **2** Next suppose that no open interval like the one hypothesized above exists. Then, in any open interval containing x_0 , there must be at least one point $x \neq x_0$ for which $f(x) = f(x_0)$. Therefore, we can construct a sequence of open intervals I_n , with lengths decreasing to 0, such that each I_n contains x_0 and a point $x_n \neq x_0$ with $f(x_n) = f(x_0)$. Therefore, since $f'(x_0)$ exists, and we recall the [previous slide,](#page-28-0) we can compute $f'(x_0)$ via

$$
f'(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = \lim_{n \to \infty} \frac{0}{x_n - x_0} = 0.
$$

We can also show that $(g \circ f)'(x_0) = 0$, using the sequence definition on the [previous slide.](#page-28-0) Try to fill in this last detail, or look it up (TBB \S 7.3.2, p. 411).

Note: TBB's proof leaves out the proof that $f'(x_0) = 0$ in case 2 above.

More on the derivative

Theorem (Derivative at local extrema)

Let $f : (a, b) \to \mathbb{R}$. If x is a maximum or minimum point of f in (a, b) , and f is differentiable at x, then $f'(x) = 0$.

Note: f need not be differentiable or even continuous at other points.

More on the derivative

Proof that the [derivative vanishes at local extrema.](#page-30-0)

If f has a local maximum at $x \in (a, b)$, then for sufficiently small $h > 0$ we must have

$$
\frac{f(x+h)-f(x)}{h}\leq 0\leq \frac{f(x)-f(x-h)}{h}
$$

Since f is differentiable at x, it is left and right differentiable at x, so we can evaluate the limits as $h \to 0$ to obtain

$$
f'_{+}(x)\leq 0\leq f'_{-}(x)\,.
$$

But since f is differentiable at x , the left and right derivatives must be equal, hence $f'(x) = 0$.

Mathematics and Statistics M $d\omega =$ *∂*M *ω*

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 4 Differentiation III Monday 13 January 2025

Poll

■ Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Office hours**

- In-Class polls: if you do not have a device that enables you to participate in polls in class, or if any other issue prevents you from participating in polls, please let me know by e-mail.
- This Friday (17 Jan 2025), I will be out of town and the class will be a Q&A session with the TA.

Announcements

■ The [online syllabus](https://mcmaster.simplesyllabusca.com/en-US/doc/cfr7a1cxn/Winter-2025-MATH-3A03-C01-EARN-) has been revised to account for the changes in how the course will be evaluated (see [slides from](#page-21-0) [Lecture 3\)](#page-21-0). In particular, the statement about AI use has been changed to:

Generative AI: Unrestricted Use

Students may use generative AI throughout this course in whatever way enhances their learning; no special documentation or citation is required. Note that access to generative AI will **not** be available during tests or exams.

■ The [course web site](https://davidearn.github.io/math3a/) has been updated to reflect the changes in how the course will be evaluated.

[Assignment 1](https://davidearn.github.io/math3a/assignments/assignments.html) has been posted on the course web site.

- Discussed [algebra of derivatives](#page-24-0) and [chain rule.](#page-25-0)
- **Proved the [chain rule.](#page-25-0)**
- **Proved that that [derivative is zero at extrema.](#page-30-1)**

The Mean Value Theorem

Theorem (Rolle's theorem)

If f is continuous on [a*,* b] and differentiable on (a*,* b), and $f(a) = f(b)$, then there exists $x \in (a, b)$ such that $f'(x) = 0$.

Proof.

f continuous on $[a, b] \implies f$ has a max and min value on $[a, b]$. If either a max or min occurs at $x \in (a, b)$ then $f'(x) = 0$. If no max or min occurs in (a*,* b) then they must both occur at the endpoints, a and b. But $f(a) = f(b)$, so f is constant. Hence $f'(x) = 0 \,\forall x \in (a, b)$. П

Theorem (Mean value theorem)

If f is continuous on [a*,* b] and differentiable on (a*,* b) then there exists $x \in (a, b)$ such that

$$
f'(x) = \frac{f(b) - f(a)}{b - a}
$$

.

The Mean Value Theorem

Proof.

Apply [Rolle's theorem](#page-38-1) to

$$
h(x) = f(x) - \left[f(a) + \left(\frac{f(b) - f(a)}{b - a} \right) (x - a) \right]. \qquad \Box
$$

Instructor: David Earn Mathematics 3A03 Real Analysis I

The Mean Value Theorem

Example

 $f'(x) > 0$ on an interval $I \implies f$ strictly increasing on I .

Proof:

Suppose $x_1, x_2 \in I$ and $x_1 < x_2$. We must show $f(x_1) < f(x_2)$.

Since $f'(x)$ exists for all $x \in I$, f is certainly differentiable on the closed subinterval $[x_1, x_2]$.

Hence by the [Mean Value Theorem](#page-38-2) $\exists x_* \in (x_1, x_2)$ such that

$$
\frac{f(x_2)-f(x_1)}{x_2-x_1}=f'(x_*)\,.
$$

But $x_2 - x_1 > 0$ and since $x_* \in I$, we know $f'(x_*) > 0$. ∴ $f(x_2) - f(x_1) > 0$, *i.e.*, $f(x_1) < f(x_2)$.

REMINDER: Intermediate Value Property

Definition (Intermediate Value Property (IVP))

A function f defined on an interval I is said to have the *intermediate value property (IVP)* on *I* iff for each $a, b \in I$ with $f(a) \neq f(b)$, and for each d between $f(a)$ and $f(b)$, there exists c between a and b for which $f(c) = d$.

REMINDER: Intermediate Value Property

Theorem (Intermediate Value Theorem (IVT))

If f is continuous on an interval I then f has the [intermediate](#page-41-1) [value property \(IVP\)](#page-41-1) on I.

Note: The interval I in the statement of the IVT does not have to be closed and it does not have to be bounded.

Unlike the [extreme value theorem,](#page-0-1) the IVT is not a theorem about functions defined on closed and bounded intervals.

Poll

■ Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Derivatives: IVP and derivatives**

\blacksquare Submit.

Intermediate Value Property

Question: If a function has the [IVP](#page-41-1) on an interval I , must it be [continuous](#page-0-1) on I?

Example

Instructor: David Earn [Mathematics 3A03 Real Analysis I](#page-0-0)

Theorem (Darboux's Theorem: IVP for derivatives)

If f is differentiable on an interval I then its derivative f ′ has the [intermediate value property](#page-41-1) on I.

Notes:

- It is f' , not f , that is claimed to have the [intermediate value](#page-41-1) [property](#page-41-1) in Darboux's theorem. This theorem does not follow from the standard [intermediate value theorem](#page-42-0) because the derivative f' is not necessarily continuous.
- **Equivalent (contrapositive) statement of Darboux's theorem:** If a function does not have the [intermediate value property](#page-41-1) on I then it is impossible that it is the derivative of any function on I.
- Darboux's theorem implies that a derivative cannot have jump or removable discontinities. Any discontinuity of a derivative must be [essential.](https://en.wikipedia.org/wiki/Classification_of_discontinuities) Recall example of a [discontinuous function with IVP.](#page-44-0)

Mathematics and Statistics M $d\omega =$ *∂*M *ω*

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 5 Differentiation IV Wednesday 15 January 2025

Instructor: David Earn [Mathematics 3A03 Real Analysis I](#page-0-0)

-
- Kieran (the TA) has created a poll for his office hour time: <https://forms.gle/WKZRvbVT4Q4wZrfaA>. Please do this poll at your convenience. (It is a Google form, not a childsmath poll.)
- \blacksquare I will have an office hour today over zoom at 2:00pm. I will e-mail a link for the zoom room at 2:00pm.
- \blacksquare I will try to finalize a weekly office hour time next week.

Example

What are the different types of discontinuities?

Example

What is an example of a function that is a derivative but is not continuous?

Consider the following differentiable function $f(x)$.

Is its derivative $f'(x)$ continuous?

Example

Instructor: David Earn [Mathematics 3A03 Real Analysis I](#page-0-0)

Example

Proof of [Darboux's Theorem.](#page-45-0)

Consider $a, b \in I$ with $a < b$.

Suppose first that $f'(a) < 0 < f'(b)$. We will show $\exists x \in (a, b)$ such that $f'(x) = 0$. Since f' exists on [a, b], we must have f continuous on [a, b], so the [Extreme Value Theorem](#page-40-0) implies that f attains its minimum at some point $x \in [a, b]$. This minimum point cannot be an endpoint of [a, b] $(x \neq a$ because $f'(a) < 0$ and $x \neq b$ because $f'(b) > 0$. Therefore, $x \in (a, b)$. But f is differentiable everywhere in (a, b) , so, by the [theorem on the derivative at local extrema,](#page-30-1) we must have $f'(x) = 0$.

Now suppose more generally that $f'(a) < K < f'(b)$. Let $g(x) = f(x) - Kx$. Then g is differentiable on I and $g'(x) = f'(x) - K$ for all $x \in I$. In addition, $g'(a) = f'(a) - K < 0$ and $g'(b) = f'(b) - K > 0$, so by the argument above, $\exists x \in (a, b)$ such that $g'(x) = 0$, i.e., $f'(x) - K = 0$, i.e., $f'(x) = K$.

The case $f'(a) > K > f'(b)$ is similar.

Example $(f'(x) \neq 0 \ \forall x \in I \implies f \nearrow$ or \searrow on I)

If f is differentiable on an interval I and $f'(x) \neq 0$ for all $x \in I$ then f is either increasing or decreasing on the entire interval I .

Proof: Suppose $\exists a, b \in I$ such that $f'(a) < 0$ and $f'(b) > 0$.

Then, from [Darboux's theorem,](#page-45-1) $\exists c \in I$ such that $f'(c) = 0$. $\Rightarrow \Leftarrow$

$$
\therefore \underline{\text{Either}} \text{``}\exists a \in I \text{ } + \text{ } f'(a) < 0\text{'' is FALSE}
$$
\n
$$
\underline{\text{or}} \text{ ``}\exists b \in I \text{ } + \text{ } f'(b) > 0\text{'' is FALSE.}
$$

∴ Since we know $f'(x) \neq 0 \ \forall x \in I$, it must be that $\text{either } f'(x) > 0 \ \forall x \in I \text{ or } f'(x) < 0 \ \forall x \in I,$ *i.e.*, either f is increasing on I or decreasing on I.

Assignment 1 Participation deadline: Monday 20 Jan 2025 @ 11:25am

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- **Click on Take Class Poll**
- **Fill in poll Assignment 1: The Derivative**

