2 [Differentiation](#page-2-0)

Instructor: David Earn [Mathematics 3A03 Real Analysis I](#page-18-0)

Differentiation

Mathematics and Statistics M $d\omega =$ *∂*M *ω*

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 2 Differentiation Wednesday 8 January 2025

Survey to do right now

■ Please go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- **Fill in poll Survey 2**

Announcements

Results of Survey 1

Results of Survey 2

Background / reminder

Definition (Cauchy sequence)

A sequence $\{s_n\}$ is said to be a **Cauchy sequence** iff for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $m \geq N$ and $n \geq N$ then $|s_n - s_m| < \varepsilon$.

Poll: another background check

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- **Fill in poll Background: Cauchy sequences**

\blacksquare Submit.

Definition (Derivative)

Let f be defined on an interval I and let $x_0 \in I$. The *derivative* of f at x_0 , denoted by $f'(x_0)$, is defined as

$$
f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},
$$

provided either that this limit exists or is infinite. If $f'(x_0)$ is finite we say that f is **differentiable** at x_0 . If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a **differentiable function**.

Note: "Differentiable" and "a derivative exists" always mean that the derivative is finite.

Example

$$
f(x) = x^2
$$
. Find $f'(2)$.

$$
f'(2) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4
$$

Note:

- In the first two limits, we must have $x \neq 2$.
- But in the third limit, we just plug in $x = 2$.
- Two things are equal, but in one $x \neq 2$ and in the other $x = 2$.
- Good illustration of why it is important to define the meaning of limits rigorously.

■ Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Derivatives: Differentiable at 0**

\blacksquare Submit.

Example

Let f be defined in a neighbourhood I of 0, and suppose $|f(x)| \leq x^2$ for all $x \in I$. Is f necessarily differentiable at 0? e.g.,

Example (Trapping principle)

Suppose
$$
f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}
$$
 Then:

$$
\forall x \neq 0: \quad \left| \frac{f(x) - f(0)}{x - 0} \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{x^2 \sin \frac{1}{x^2}}{x} \right| = \left| x \sin \frac{1}{x^2} \right| \leq |x|
$$

Therefore:

$$
|f'(0)| = \left|\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}\right| = \lim_{x \to 0} \left|\frac{f(x) - f(0)}{x - 0}\right| \le \lim_{x \to 0} |x| = 0.
$$

∴ f is differentiable at 0 and $f'(0) = 0$.

Г

Definition (One-sided derivatives)

Let f be defined on an interval I and let $x_0 \in I$. The **right-hand** *derivative* of f at x_0 , denoted by $f'_{+}(x_0)$, is the limit

$$
f'_{+}(x_0)=\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0},
$$

provided either that this one-sided limit exists or is infinite. Similarly, the *left-hand derivative* of f at x_0 , denoted by $f'_{-}(x_0)$, is the limit

$$
f'_{-}(x_0)=\lim_{x\to x_0^{-}}\frac{f(x)-f(x_0)}{x-x_0}.
$$

Note: If x_0 is not an endpoint of the interval *I* then *f* is differentiable at x_0 iff $f'_{+}(x_0) = f'_{-}(x_0) \neq \pm \infty$.

Example

 \blacksquare Higher derivatives: we write

- $f'' = (f')'$ if f' is differentiable;
- $f^{(n+1)} = (f^{(n)})'$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$
\frac{df}{dx} = f'(x)
$$

$$
D = \frac{d}{dx}
$$

$$
D^{n}f(x) = \frac{d^{n}f}{dx^{n}} = f^{(n)}(x)
$$

REMINDER: Algebra of limits

Theorem (Algebraic operations on limits of sequences)

Suppose $\{s_n\}$ and $\{t_n\}$ are [convergent sequences](#page-0-1) and $C \in \mathbb{R}$.

1
$$
\lim_{n\to\infty} C s_n = C(\lim_{n\to\infty} s_n)
$$
;

$$
\mathbf{E} \lim_{n \to \infty} (s_n + t_n) = (\lim_{n \to \infty} s_n) + (\lim_{n \to \infty} t_n) ;
$$

$$
\lim_{n\to\infty}(s_n-t_n)=(\lim_{n\to\infty}s_n)-(\lim_{n\to\infty}t_n)
$$
;

$$
\lim_{n\to\infty}(s_nt_n)=(\lim_{n\to\infty}s_n)(\lim_{n\to\infty}t_n) ;
$$

5 if
$$
t_n \neq 0
$$
 for all *n* and $\lim_{n \to \infty} t_n \neq 0$ then
\n
$$
\lim_{n \to \infty} \left(\frac{s_n}{t_n} \right) = \frac{\lim_{n \to \infty} s_n}{\lim_{n \to \infty} t_n}.
$$

(TBB [§2.7, and problem 2.7.4\)](#page-73-0)

REMINDER: Algebra of limits

Theorem (Algebraic operations on limits of functions)

Suppose $f, g : \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$, the limits as $x \to x_0$ of $f(x)$ and $g(x)$ both exist, and $C \in \mathbb{R}$.

$$
\lim_{x\to x_0} C f(x) = C \left(\lim_{x\to x_0} f(x)\right) ;
$$

$$
\mathbf{E} \lim_{x \to x_0} (f(x) + g(x)) = (\lim_{x \to x_0} f(x)) + (\lim_{x \to x_0} g(x)) ;
$$

$$
\lim_{x\to x_0} (f(x)-g(x)) = (\lim_{x\to x_0} f(x)) - (\lim_{x\to x_0} g(x)) ;
$$

$$
\lim_{x\to x_0} (f(x)g(x)) = (\lim_{x\to x_0} f(x)) (\lim_{x\to x_0} g(x)) ;
$$

a if
$$
g(x) \neq 0
$$
 for $x \in (x_0 - \delta, x_0 + \delta)$ for some $\delta > 0$, and
\n
$$
\lim_{x \to x_0} g(x) \neq 0
$$
 then
$$
\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}
$$
.

Theorem (Differentiable \implies continuous)

If f is defined in a neighbourhood I of x_0 and f is differentiable at x_0 then f is continuous at x_0 .

Proof.

Must show
$$
\lim_{x \to x_0} f(x) = f(x_0),
$$
 i.e., $\lim_{x \to x_0} (f(x) - f(x_0)) = 0.$

\n
$$
\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \times (x - x_0) \right)
$$
\n
$$
= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right) \times \lim_{x \to x_0} (x - x_0)
$$
\n
$$
= f'(x_0) \times 0 = 0,
$$

where we have used the theorem on the algebra of limits.