1 Introduction

2 Properties of \mathbb{R}

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 1 Introduction Tuesday 3 September 2019

Where to find course information

- The course web site: http://ms.mcmaster.ca/earn/3A03
- Click on Course information to download course information as pdf file. You are expected to read and pay attention to every word of this file.
- Let's have a look now...

What is a "real" number?

What is a "real" number?

- The "Reals" (ℝ) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- Why aren't the rational numbers (Q) sufficient?

- How do we know that $\sqrt{2}$ is not rational?
- How can we prove this? <u>Approach</u>: "Proof by contradiction."

$\sqrt{2}$ is irrational

Theorem

 $\sqrt{2} \not\in \mathbb{Q}.$

Proof.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then there exist two positive integers *m* and *n* with gcd(m, n) = 1 such that $m/n = \sqrt{2}$.

$$\therefore \left(\frac{m}{n}\right)^2 = \left(\sqrt{2}\right)^2 \implies \frac{m^2}{n^2} = 2 \implies m^2 = 2n^2.$$

 $\therefore m^2$ is even $\implies m$ is even (\because odd numbers have odd squares).

$$\therefore m = 2k$$
 for some $k \in \mathbb{N}$.

 $\therefore 4k^2 = m^2 = 2n^2 \implies 2k^2 = n^2 \implies n \text{ is even.}$

 \therefore 2 is a factor of both *m* and *n*. Contradiction! $\therefore \sqrt{2} \notin \mathbb{Q}$.

Does $\sqrt{2}$ exist?

- We have established that $\sqrt{2}$ is not rational.
- But do we really know it exists?
- Can we do without it?
- No. Objects with side length $\sqrt{2}$ exist!

So irrational numbers are "real".

Poll on rationality

- Please log in (right now) to this web site: https: //www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03.
- Click on Take Class Poll.
- After selecting the numbers you think are rational, click the Submit button.
- Everybody done?
- Let's Deactivate the poll and View Results

What exactly are non-rational real numbers?

- We have solid intuition for what rational numbers are. (Ratios of integers.)
- The number line contains numbers that are not rational.

- Can we *construct* irrational numbers?
 (Just as we construct rationals as ratios of integers?)
- Do we need to *construct* integers first?
- Maybe we should start with 0, 1, 2, ...
- But <u>what</u> exactly are we supposed to construct numbers <u>from</u>?

Informal introduction to construction of numbers (\mathbb{N})

- Assume we know what a set is.
- Define $0 \equiv \emptyset = \{\}$ (the empty set)
- Define $1 \equiv \{0\} = \{\emptyset\} = \{\{\}\}$
- **Define** $2 \equiv \{0, 1\} = \{\{\}, \{\{\}\}\}$
- Define $n + 1 \equiv n \cup \{n\}$ (successor function)
- Define *natural numbers* $\mathbb{N} = \{1, 2, 3, ...\}$
 - Some books define $\mathbb{N}=\{0,1,2,\ldots\}$ and $\mathbb{N}^+=\{1,2,3,\ldots\}.$
 - It is more common to define \mathbb{N} to start with 1.
- Thus, *n* is defined to be a set containing *n* elements.

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

- We have defined n to be a set containing n elements.
- Logicians first tried to define n as "the set of all sets containing n elements".
- The earlier definition possibly better captures our intuitive notion of what n "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

Natural numbers defined as above have the right order:

$$m \leq n \iff m \subseteq n$$

<u>*Note:*</u> we define " \leq " on natural numbers via " \subseteq " on sets.

Addition and multiplication of natural numbers:

- Still possible to define in terms of sets, but trickier.
- We'll defer this for later, after gaining more experience with rigorous mathematical concepts.
- If you can't wait, see this free e-book:

"Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/.

Informal introduction to construction of numbers (\mathbb{Z})

Integers:

- Need additive inverses for all natural numbers.
- Need to define \cdot , +, -, for all pairs of integers.
- Again, possible to define everything via set theory.
- Again, we'll defer this for later.

- For now, we'll assume we "know" what the naturals $\mathbb N$ and the integers $\mathbb Z$ "are".
- We can then *construct* the rationals \mathbb{Q} ...

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 2 Properties of ℝ Thursday 5 September 2019

Where to find course information

- The course web site: http://ms.mcmaster.ca/earn/3A03
- Click on Course information to download pdf file.
 Read it!!
- Check the course web site regularly!
- Assignment 1: You should have received an e-mail from crowdmark. If not, please e-mail earn@math.mcmaster.ca
 ASAP stating your full name, student number, and when you registered in the course.

What we did last class

- The "Reals" (ℝ) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- The rationals (\mathbb{Q}) have "holes", *e.g.*, $\sqrt{2}$.
- Numbers can be constructed using sets. We will discuss this informally. A more formal approach is taken in Math 4L03 (Mathematical Logic) or in this online e-book.
 - The naturals $(\mathbb{N} = \{1, 2, 3, ...\})$ can be constructed from \emptyset : $0 = \emptyset, \ 1 = \{0\}, \ 2 = \{0, 1\}, ..., \ n+1 = n \cup \{n\}.$
 - The integers (Z), and operations on them (+, -, ·), can also be constructed from sets and set operations (but we deferred that for later).
 - \blacksquare Given $\mathbb N$ and $\mathbb Z,$ we can construct $\mathbb Q.\,.\,.$

Bonus participation marks via class polls

- Class polls are administered online at https: //www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03, then Take Class Poll, then fill in the poll and Submit.
- If you participate in the polls, you can earn bonus marks in your final grade in the course. Your final grade will be increased by 1%, 2% or 3% depending how much you participate. If you participate in
 - 75–89% of class polls \implies 1% bonus;
 - 90–94% of class polls \implies 2% bonus;
 - \geq 95% of class polls \implies 3% bonus.
- <u>Note</u>: Bonus marks are entirely for participation. There are no marks associated with getting the right answer if there is one.

• Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 2: Math Background

Submit.

Informal introduction to construction of numbers (\mathbb{Q})

Rationals:

• Idea: Associate \mathbb{Q} with $\mathbb{Z} \times \mathbb{N}$

• Use notation
$$\frac{a}{b} \in \mathbb{Q}$$
 if $(a, b) \in \mathbb{Z} \times \mathbb{N}$.

Define equivalence of rational numbers:

$$\frac{a}{b} = \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d = b \cdot c$$

Define order for rational numbers:

$$\frac{a}{b} \leq \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d \leq b \cdot c$$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals, continued:

Define operations on rational numbers:

a c	def	ad + bc
$\overline{b}^{+}\overline{d}$	_	bd
a c	def	а·с
\overline{b} \overline{d}	_	$\overline{b \cdot d}$

- Constructed in this way (ultimately from the empty set),
 Q satisfies all the standard properties we associate with the rational numbers.
- Formally, Q is a set of equivalence classes of Z × N. Extra Challenge Problem: Are "+" and "." well-defined on Q?

Properties of the rational numbers (\mathbb{O})

Addition:

- **A** Closed and commutative under addition. For any $x, y \in \mathbb{Q}$ there is a number $x + y \in \mathbb{Q}$ and x + y = y + x.
- **Associative under addition.** For any $x, y, z \in \mathbb{Q}$ the identity

$$(x+y)+z=x+(y+z)$$

is true.

Existence and uniqueness of additive identity. There is a unique number $0 \in \mathbb{Q}$ such that, for all $x \in \mathbb{Q}$,

$$x + 0 = 0 + x = x.$$

A *Existence of additive inverses.* For any number $x \in \mathbb{Q}$ there is a corresponding number denoted by -x with the property that

$$x+(-x)=0.$$

Properties of the rational numbers (\mathbb{Q})

Multiplication:

- M Closed and commutative under multiplication. For any $x, y \in \mathbb{Q}$ there is a number $xy \in \mathbb{Q}$ and xy = yx.
- M Associative under multiplication. For any $x, y, z \in \mathbb{Q}$ the identity (xy)z = x(yz) is true.
- M Existence and uniqueness of multiplicative identity. There is a unique number $1 \in \mathbb{Q} \setminus \{0\}$ such that, for all $x \in \mathbb{Q}$, x1 = 1x = x.
- **Existence of multiplicative inverses.** For any non-zero number $x \in \mathbb{Q}$ there is a corresponding number denoted by x^{-1} with the property that $xx^{-1} = 1$.

Properties of the rational numbers (\mathbb{Q})

Addition and multiplication together:

A Distributive law. For any $x, y, z \in \mathbb{Q}$ the identity

$$(x+y)z = xz + yz$$

is true.

The 9 properties (A1–A4, M1–M4, AM1) make the rational numbers \mathbb{Q} a *field*.

<u>Note</u>: M3 ensures $0 \neq 1$ to exclude the uninteresting case of a field with only one element.

Standard Mathematical Shorthand

Quantifiers		Logical operands	
\forall	for all	\wedge	logical and
Ξ	there exists	\vee	logical or
∄	there does not exist	_	logical not
∃!	there exists a unique	$\underline{\vee}$	logical exclusive or

Note:
$$A \leq B \equiv (A \lor B) \land (\neg A \lor \neg B)$$

Other shorthand

 $\begin{array}{cccc} & & \text{therefore} & & \ddots & \text{because} \\ \\ \end{array} & & \text{such that} & & \Longleftrightarrow & \text{if and only if} \\ \\ \equiv & & \text{equivalent} & & \Rightarrow \leftarrow & \text{contradiction} \end{array}$

The field axioms (in mathematical shorthand) for field $\mathbb F$

Addition axioms

- Λ Closed, commutative. $\forall x, y \in \mathbb{F}$, $\exists (x + y) \in \mathbb{F} \land (x + y) =$ (y+x).
- Associative. $\forall x, y, z \in \mathbb{F}$, (x + y) + z = x + (y + z).
- **A** Identity. $\exists ! 0 \in \mathbb{F} + \forall x \in \mathbb{F}$, x + 0 = 0 + x = x.
- **A** Inverses. $\forall x \in \mathbb{F}, \exists (-x) \in \mathbb{F}$ x + (-x) = 0.

Multiplication axioms

- **M** Closed, commutative. $\forall x, y \in \mathbb{F}$, $\exists (xy) \in \mathbb{F} \land (xy) = (yx).$
- **M** Associative. $\forall x, y, z \in \mathbb{F}$, (xy)z = x(yz).
- **M** *Identity*. $\exists ! 1 \in \mathbb{F} \setminus \{0\} +$ $\forall x \in \mathbb{F}$. x1 = 1x = x.
- M Inverses. $\forall x \in \mathbb{F} \setminus \{0\}$, $\exists x^{-1} \in \mathbb{F} + xx^{-1} = 1.$

Distribution axiom

 \blacksquare Distribution. $\forall x, y, z \in \mathbb{F}$, (x + y)z = xz + yz.

Any collection \mathbb{F} of mathematical objects is called a *field* if it satisfies these 9 algebraic properties.

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 2: Which are Fields?

Submit.

The integers modulo 3 (\mathbb{Z}_3)

Imagine a clock that repeats after 3 hours rather than 12 hours.

 \mathbb{Z}_3 contains the three elements $\{0,1,2\},$ with addition and multiplication defined as follows:

Examples of fields

Set	Field?	Why?
rationals (\mathbb{Q})	YES	
integers (\mathbb{Z})	NO	no multiplicative inverses
reals (\mathbb{R})	YES	
complexes (\mathbb{C})	YES	
integers modulo 3 (\mathbb{Z}_3)	YES	$2^{-1} = 2$

Ordered fields

A field \mathbb{F} is said to be *ordered* if the following properties hold:

Order axioms

- **○** For any $x, y \in \mathbb{F}$, exactly one of the statements x = y, x < yor y < x is true ("*trichotomy*"), *i.e.*, $\forall x, y \in \mathbb{F}$, $((x = y) \land \neg(x < y) \land \neg(y < x)) \lor ((x \neq y) \land [(x < y) \lor (y < x)])$

- **O** For any $x, y, z \in \mathbb{F}$, if x < y is true and z > 0 is true, then xz < yz is also true,

i.e., $\forall x, y, z \in \mathbb{F}$, $(x < y) \land (0 < z) \implies (xz < yz)$

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 2: Which are ORDERED Fields?

Submit.

Examples of ordered fields

Field	Ordered?	Why?
rationals (\mathbb{Q})	YES	
reals (\mathbb{R})	YES	
integers modulo 3 (\mathbb{Z}_3)	NO	Next slide
complexes (\mathbb{C})	NO	
		Extra Challenge Problem: Prove the field \mathbb{C} cannot be ordered.

The field of integers modulo 3 cannot be ordered

Proposition

 \mathbb{Z}_3 is not an ordered field.

Proof.

<u>Approach</u>: proof by contradiction.

If \mathbb{Z}_3 is ordered, then O1 (trichotomy) implies that either 0<1 or 1<0 (and not both).

Food for thought: Is it possible for any finite field be ordered?

What other properties does \mathbb{R} have?

- $\blacksquare \mathbb{R}$ is an ordered field.
- **R** includes numbers that are not in \mathbb{Q} , *e.g.*, $\sqrt{2}$.
- What additional properties does \mathbb{R} have?
- Only one more property is required to fully characterize \mathbb{R} ... It is related to upper and lower bounds...