

1 Introduction

Mathematics
and Statistics

$$\int_M d\omega = \int_{\partial M} \omega$$

Mathematics 3A03

Real Analysis I

Instructor: David Earn

Lecture 1
Introduction
Tuesday 6 January 2026

If you haven't already, please fill in Math 3A03 Survey 1 on childsmath

- Go to
https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Survey 1**
- Submit.

Where to find course information

- The course web site: <http://ms.mcmaster.ca/earn/3A03>
- Click on **Course syllabus** to view the basic course information.
 - *You are expected to read and pay attention to every word of the syllabus.*
 - *Note that some items in the syllabus are tentative and might be updated.*
- Let's have a look now...

What you are assumed to know

Chapters 1–5 of Bartle and Sherbert (BS), *Introduction to Real Analysis*

- The Real Numbers, \mathbb{R} (BS [Chapter 2](#))
- Sequences and Series (BS [Chapter 3](#))
- Limits of functions (BS [Chapter 4](#))
- Continuous functions (BS [Chapter 5](#))

Let's do a few polls to trigger your memory. . .

Background Poll: Characteristic property of \mathbb{R}

- Go to
https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Background: The property that characterizes \mathbb{R} in comparison with \mathbb{Q}**
-

Background Poll: Sequence limit order

- Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Background: Sequence limit order**
- **Submit**.

Background Poll: Monotone convergence

- Go to

https://www.mathschild.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Background: Monotone convergence**
- **Submit**.

Background Poll: Intermediate and extreme values

- Go to
https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Background: Intermediate and extreme values**
- **Submit**.

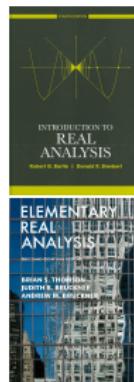
Background / reminder

Definition (Cauchy sequence)

A sequence $\{s_n\}$ is said to be a ***Cauchy sequence*** iff for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $m \geq N$ and $n \geq N$ then $|s_n - s_m| < \varepsilon$.

Poll: another background check

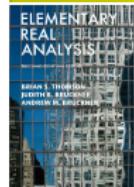
- Go to
https://www.childsmath.ca/childsa/forms/main_login.php
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Background: Cauchy sequences**
- **Submit**.


What we will cover in this course

Primary sources

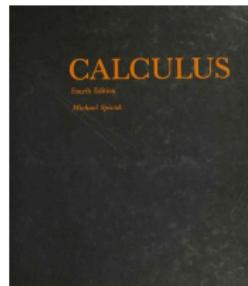
- **Second half of Math 3IA3 textbook:**

Bartle and Sherbert (BS),


Introduction to Real Analysis

- **Online textbook:**

Thomson, Bruckner and Bruckner (TBB),


Elementary Real Analysis

- **Optional book:**

Michael Spivak, "Calculus" (4th ed., 2008)

- This book is not sufficiently advanced for this course, but the exposition of elementary analysis is very nice.
- It is a great read, and if you read it you'll see some of the things that inspire some aspects of my presentation style.

What we will cover in this course

Primary topics

- ***Differentiation***

(BS Chapter 6) (TBB Chapter 7)

- ***Integration***

(BS Chapter 7) (TBB Chapter 8)

- ***Topology of the real line***

(BS Chapter 11) (TBB Chapter 4)

- ***Sequences and series of functions***

(BS Chapters 8 and 9) (TBB Chapter 9)

- ***Metric spaces***

(TBB Chapter 13)

Survey

If you haven't already,
please complete the "Survey 1"
poll on childsmath.

In addition to doing the survey, please e-mail
me (now or at any point in the term) with
any preferences or suggestions you have
about how to run the course.

Questions

Questions?