1 Introduction

McMaster University

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 1
Introduction
Tuesday 3 September 2019

Where to find course information

■ The course web site: http://ms.mcmaster.ca/earn/3A03
■ Click on Course information to download course information as pdf file. You are expected to read and pay attention to every word of this file.

■ Let's have a look now...

What is a "real" number?

What is a "real" number?

■ The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").

■ Why aren't the rational numbers (\mathbb{Q}) sufficient?

- How do we know that $\sqrt{2}$ is not rational?
- How can we prove this?

Approach: "Proof by contradiction."

$\sqrt{2}$ is irrational

Theorem

$\sqrt{2} \notin \mathbb{Q}$.

Proof.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then there exist two positive integers m and n with $\operatorname{gcd}(m, n)=1$ such that $m / n=\sqrt{2}$.
$\therefore\left(\frac{m}{n}\right)^{2}=(\sqrt{2})^{2} \quad \Longrightarrow \quad \frac{m^{2}}{n^{2}}=2 \quad \Longrightarrow \quad m^{2}=2 n^{2}$.
$\therefore m^{2}$ is even $\Longrightarrow m$ is even (\because odd numbers have odd squares).
$\therefore m=2 k$ for some $k \in \mathbb{N}$.
$\therefore 4 k^{2}=m^{2}=2 n^{2} \quad \Longrightarrow \quad 2 k^{2}=n^{2} \quad \Longrightarrow \quad n$ is even.
$\therefore 2$ is a factor of both m and n. Contradiction! $\therefore \sqrt{2} \notin \mathbb{Q}$.

Does $\sqrt{2}$ exist?

- We have established that $\sqrt{2}$ is not rational.
- But do we really know it exists?
- Can we do without it?
- No. Objects with side length $\sqrt{2}$ exist!

■ So irrational numbers are "real".

Poll on rationality

■ Please log in (right now) to this web site: https: //www.childsmath.ca/childsa/forms/main_login.php
■ Click on Math 3A03.
■ Click on Take Class Poll.

- After selecting the numbers you think are rational, click the Submit button.

■ Everybody done?
■ Let's Deactivate the poll and View Results

What exactly are non-rational real numbers?

■ We have solid intuition for what rational numbers are. (Ratios of integers.)

- The number line contains numbers that are not rational.

- Can we construct irrational numbers?
(Just as we construct rationals as ratios of integers?)
- Do we need to construct integers first?

■ Maybe we should start with $0,1,2, \ldots$
■ But what exactly are we supposed to construct numbers from?

Informal introduction to construction of numbers (\mathbb{N})

- Assume we know what a set is.

■ Define $0 \equiv \varnothing=\{ \} \quad$ (the empty set)

- Define $1 \equiv\{0\}=\{\varnothing\}=\{\{ \}\}$
- Define $2 \equiv\{0,1\}=\{\{ \},\{\{ \}\}\}$

■ Define $n+1 \equiv n \cup\{n\} \quad$ (successor function)
■ Define natural numbers $\mathbb{N}=\{1,2,3, \ldots\}$

- Some books define $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{N}^{+}=\{1,2,3, \ldots\}$.
- It is more common to define \mathbb{N} to start with 1 .
- Thus, n is defined to be a set containing n elements.

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

■ We have defined n to be a set containing n elements.
■ Logicians first tried to define n as "the set of all sets containing n elements".

■ The earlier definition possibly better captures our intuitive notion of what n "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

■ Natural numbers defined as above have the right order:

$$
m \leq n \Longleftrightarrow m \subseteq n
$$

Note: we define " \leq " on natural numbers via " \subseteq " on sets.

Addition and multiplication of natural numbers:

- Still possible to define in terms of sets, but trickier.
- We'll defer this for later, after gaining more experience with rigorous mathematical concepts.

■ If you can't wait, see this free e-book:
> "Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/.

Informal introduction to construction of numbers (\mathbb{Z})

Integers:

■ Need additive inverses for all natural numbers.
■ Need to define •, +, -, for all pairs of integers.
■ Again, possible to define everything via set theory.
■ Again, we'll defer this for later.

■ For now, we'll assume we "know" what the naturals \mathbb{N} and the integers \mathbb{Z} "are".

■ We can then construct the rationals \mathbb{Q}...

