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Announcements

m New, exciting topic today. ..
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Sequences and Series
of Functions




Limits of Functions

We know that it can be useful to represent functions as limits of
other functions.

Example

The power series expansion
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expresses the exponential e* as a certain limit of the functions
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X
1, 1+ﬁ’ 1+ﬁ+§’ 1+ﬁ+a+§,

Our goal is to give meaning to the phrase “/imit of functions”, and
discuss how functions behave under limits.
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Pointwise Convergence

m There are multiple inequivalent ways to define the limit of a
sequence of functions.

m Consequently, there are multiple different notions of what it
means for a sequence of functions to converge.

m Some convergence notions are better behaved than others.

We will begin with the simplest notion of convergence.

Definition (Pointwise Convergence)

Suppose {f,} is a sequence of functions defined on a domain

D C R, and let f be another function defined on D. Then {f,}
converges pointwise on D to f if, for every x € D, the sequence
{fa(x)} of real numbers converges to f(x).

What useful properties of functions does pointwise convergence
preserve?
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Pointwise Convergence

x" 0<x<1, 0 0< 1
fn(X)—{l lim fo(x) = { =Xs

X 1. n—00 1 x 2 1

m The limit of this sequence
(of continuous functions) is
not continuous.

m If we smooth the corner of
fa(x) at x =1, we get a
sequence of differentiable
functions that converge to a
function that is not even
continuous.
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Pointwise Convergence

Define fp(x) on [0, 1] as follows:

2n2x, ogxgi
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Uniform Convergence

A much better behaved notion of convergence is the following.

Definition (f, — f uniformly)

Suppose {f,} is a sequence of functions defined on a domain
D C R, and let f be another function defined on D. Then {f,}
converges uniformly on D to f if, for every € > 0, there is some

N € N so that, for all x € D,
- n>N = |fa(x) — f(x)| <e.

Note that {f,} converges uniformly to f if and only if Ve >0,

dN € N such that
n>N = sup,plf(x)—f(x)| <e.

uniform convergence pointwise convergence
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Uniform Convergence

The sense in which uniform convergence is better behaved
than pointwise convergence is that it does preserve at least
some properties of the sequence of functions.

Which properties?
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Uniform Convergence

Theorem (Continuity and Uniform Convergence)

Suppose {f,} is a sequence of functions that converges uniformly
on [a, b] to f. If each f, is continuous on [a, b], then f is
continuous on [a, b].

What should our proof strategy be?

Our goal is to show that the limit function f is continuous for all

x € [a, b]. So given x € [a, b], we must show that for any € > 0 we can
find a small enough neighbourhood of x, say (x — d, x + §) for some small
d, such that |f(x) — ()| <e if y € (x=8,x+9), ie, if |x—y| <.
Somehow we have to manage this using the facts that (i) each , is
continuous and (ii) f, — f uniformly.

The key is that (for any n) if x and y are close then f,(x) and f,(y) are
close, and, if n is large enough, 7, is (uniformly) close to f throughout
[a, b], so continuity is “passed through” to the limit.

Let's make this precise. ..
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Uniform Convergence

Proof: f, continuous Vn and f, — f uniformly = f continuous.

Fix x € [a, b] and € > 0. We must show 36 > 0 such that if
€ [a, b] and |x — y| < § then |f(x) — f(V)| <e.

Since f, — f uniformly, AN € N } |fu(y) — f(v)| < § Vy € [a, b]
(in particular, x € [a, b], so we have |fy(x) — f(x)| < 5).
Fix such an integer N.

Since fy is continuous, there is some § > 0 such that if y € [a, b]

satisfies [x — y| <, then |fy(x) — fu(v)| < §. For such v, we
then have
[F() = fW)I = [F(x) = fn(x) + fn(x) — () + fn(y) = ()l
< FG) = O+ [in(x) = vl + [ (y) = F(V)]
< % + % + % = g
as required. O
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Uniform Convergence

Theorem (Integrability and Uniform Convergence)

Suppose {f,} is a sequence of functions that converges uniformly
on [a, b] to f. If each f, is integrable on [a, b], then f is integrable

and
b b
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