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Integration
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Announcements

Solutions to Assignment 1 were posted last night.

Kieran will have office hours tomorrow (Thursday) for two
hours, 12:30–2:30 pm. (He will not have a Friday office hour
this week.)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Integration

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integration

f

R(f , a, b)

(
a, 0

) (
b, 0

)

“Area of region R(f , a, b)” is actually a very subtle concept.
We will only scratch the surface of it (greater depth in Math 4A).
Our treatment is similar to that in Michael Spivak’s “Calculus” (2008);
BS refer to this approach as the Darboux integral (BS §7.4, p. 225).
The Darboux and Riemann approaches to the integral are equivalent.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integration

f

(
a, 0

) (
b, 0

)

Contribution to “area of R(f , a, b)” is positive or negative
depending on whether f is positive or negative.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower sum

a = t0 t1 t2 t3 t4 = b

m1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Upper sum

a = t0 t1 t2 t3 t4 = b

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 = b

m1
M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

m1
M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

m1M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Partition)
Let a < b. A partition of the interval [a, b] is a finite collection of
points in [a, b], one of which is a, and one of which is b.

We normally label the points in a partition

a = t0 < t1 < · · · < tn−1 < tn = b ,

so the i th subinterval in the partition is

[ti−1, ti ] .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Lower and upper sums)
Suppose f is bounded on [a, b] and P = {t0, . . . , tn} is a partition
of [a, b]. Recalling the motivating sketch, let

mi = inf
{

f (x) : x ∈ [ti−1, ti ]
}

,

Mi = sup
{

f (x) : x ∈ [ti−1, ti ]
}

.

The lower sum of f for P, denoted by L(f , P), is defined as

L(f , P) =
n∑

i=1
mi(ti − ti−1) .

The upper sum of f for P, denoted by U(f , P), is defined as

U(f , P) =
n∑

i=1
Mi(ti − ti−1) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Relationship between motivating sketch and rigorous definition
of lower and upper sums:

The lower and upper sums correspond to the total areas of
rectangles lying below and above the graph of f in our
motivating sketch.

However, these sums have been defined precisely
without any appeal to a concept of “area”.

The requirement that f be bounded on [a, b] is essential in
order to be sure that all the mi and Mi are well-defined.

It is also essential that the mi and Mi be defined as inf’s and
sup’s (rather than maxima and minima) because f was not
assumed to be continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral
Relationship between motivating sketch and rigorous definition
of lower and upper sums:

Since mi ≤ Mi for each i , we have

mi(ti − ti−1) ≤ Mi(ti − ti−1) , i = 1, . . . , n.

∴ For any partition P of [a, b] we have

L(f , P) ≤ U(f , P),

because
L(f , P) =

n∑

i=1
mi(ti − ti−1) ,

U(f , P) =
n∑

i=1
Mi(ti − ti−1) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: Lower and Upper Sums

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Rigorous development of the integral

Relationship between motivating sketch and rigorous definition
of lower and upper sums:

More generally, if P1 and P2 are any two partitions of [a, b],
it ought to be true that

L(f , P1) ≤ U(f , P2),

because L(f , P1) should be ≤ area of R(f , a, b), and U(f , P2)
should be ≥ area of R(f , a, b).

But “ought to” and “should be” prove nothing, especially
since we haven’t yet even defined “area of R(f , a, b)”.

Before we can define “area of R(f , a, b)”, we need to prove
that L(f , P1) ≤ U(f , P2) for any partitions P1, P2 . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Lemma (Partition Lemma)
If partition P ⊆ partition Q (i.e., if every point of P is also in Q),
then L(f , P) ≤ L(f , Q) and U(f , P) ≥ U(f , Q).

a = t0 t1 t2 = b
a = u0 u1 u2 u3 u4 u5 = b

f

m′′
m′

P = {t0, t1, t2}
Q = {u0(= t0), u1, u2(= t1), u3, u4, u5(= t2)}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Partition Lemma
As a first step, consider the special case in which the finer partition
Q contains only one more point than P:

P = {t0, . . . , tn} ,

Q = {t0, . . . , tk−1, u, tk , . . . , tn} ,

where

a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b .

Because [tk−1, tk ] is split by u, we have two lower bounds:

m′ = inf
{

f (x) : x ∈ [tk−1, u]
}

,

m′′ = inf
{

f (x) : x ∈ [u, tk ]
}

.

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Partition Lemma (cont.)

Then L(f , P) =
n∑

i=1
mi(ti − ti−1) ,

and L(f , Q) =
k−1∑

i=1
mi(ti − ti−1) + m′(u − tk−1)

+ m′′(tk − u) +
n∑

i=k+1
mi(ti − ti−1) .

∴ To prove L(f , P) ≤ L(f , Q), it is enough to show

mk(tk − tk−1) ≤ m′(u − tk−1) + m′′(tk − u) .

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Partition Lemma (cont.)
Now note that since

{
f (x) : x ∈ [tk−1, u]

} ⊆ {
f (x) : x ∈ [tk−1, tk ]

}
,

the RHS might contain some additional smaller numbers, so we
must have

mk = inf
{

f (x) : x ∈ [tk−1, tk ]
}

≤ inf
{

f (x) : x ∈ [tk−1, u]
}

= m′ .

Thus, mk ≤ m′, and, similarly, mk ≤ m′′.

∴ mk(tk − tk−1) = mk(tk − u + u − tk−1)
= mk(u − tk−1) + mk(tk − u)
≤ m′(u − tk−1) + m′′(tk − u) ,

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration 25/54

Rigorous development of the integral

Proof of Partition Lemma (cont.)
which proves (in this special case where Q contains only one more
point than P) that L(f , P) ≤ L(f , Q).
We can now prove the general case by adding one point at a time.
If Q contains ℓ more points than P, define a sequence of partitions

P = P0 ⊂ P1 ⊂ · · · ⊂ Pℓ = Q

such that Pj+1 contains exactly one more point than Pj . Then

L(f , P) = L(f , P0) ≤ L(f , P1) ≤ · · · ≤ L(f , Pℓ) = L(f , Q) ,

so L(f , P) ≤ L(f , Q).
(Proving U(f , P) ≥ U(f , Q) is similar: check!)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Theorem (Partition Theorem)
Let P1 and P2 be any two partitions of [a, b]. If f is bounded on
[a, b] then

L(f , P1) ≤ U(f , P2) .

Proof.
This is a straightforward consequence of the partition lemma.

Let P = P1 ∪ P2, i.e., P is the partition obtained by combining all
the points of P1 and P2.

Then
L(f , P1) ≤ L(f , P) ≤ U(f , P) ≤ U(f , P2) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral
Important inferences that follow from the partition theorem:

For any partition P ′, the upper sum U(f , P ′) is an upper
bound for the set of all lower sums L(f , P).

∴ sup
{
L(f , P) : P a partition of [a, b]

} ≤ U(f , P ′) ∀P ′

∴ sup
{
L(f , P)

} ≤ inf
{
U(f , P)

}

∴ For any partition P ′,
L(f , P ′) ≤ sup

{
L(f , P)

} ≤ inf
{
U(f , P)

} ≤ U(f , P ′)

If sup
{
L(f , P)

}
= inf

{
U(f , P)

}
then we can define “area of

R(f , a, b)” to be this number.

Is it possible that sup
{

L(f , P)
}

< inf
{

U(f , P)
}

?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: sup
{
L(f , P)

}
< inf

{
U(f , P)

}
?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Mathematics
and Statistics∫

M
dω =

∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 8
Integration II

Friday 24 January 2025

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 2 will be posted either during, or soon after, the
weekend.

Kieran’s office hours going forward are as follows:
Thursday 12:30–1:30 (Math Café)
Friday 12:30–1:30 (HH 207)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: sup
{
L(f , P)

}
< inf

{
U(f , P)

}
?

(AGAIN!)

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Rigorous development of the integral

Example
∃? f : [a, b] → R (bounded) )– sup

{
L(f , P)

}
< inf

{
U(f , P)

}

Let f (x) =
{

1 x ∈ Q ∩ [a, b],
0 x ∈ Qc ∩ [a, b].

Consider any partition P of [a, b].
If P = {t0, . . . , tn} then mi = 0 ∀i (∵ [ti−1, ti ] ∩ Qc ̸= ∅),

and Mi = 1 ∀i (∵ [ti−1, ti ] ∩ Q ̸= ∅).
∴ L(f , P) = 0 and U(f , P) = b − a for any partition P.
∴ sup

{
L(f , P)

}
= 0 < b − a = inf

{
U(f , P)

}
.

Can we define “area of R(f , a, b)” for such a weird function?
Yes, but not in this course!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Integrable)
A function f : [a, b] → R is said to be integrable on [a, b] if it is
bounded on [a, b] and

sup
{
L(f , P) : P a partition of [a, b]

}

= inf
{
U(f , P) : P a partition of [a, b]

}
.

In this case, this common number is called the integral of f on
[a, b] and is denoted ∫ b

a
f

Note: If f is integrable then for any partition P we have

L(f , P) ≤
∫ b

a
f ≤ U(f , P) ,

and
∫ b

a f is the unique number with this property.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Notation:
∫ b

a
f (x) dx means precisely the same as

∫ b

a
f .

The symbol “dx” has no meaning in isolation
just as “x →” has no meaning except in limx→a f (x).

It is not clear from the definition which functions are
integrable.

The definition of the integral does not itself indicate how to
compute the integral of any given integrable function. So far,
without a lot more effort, we can’t say much more than these
two things:

1 If f (x) ≡ c then f is integrable on [a, b] and
∫ b

a f = c · (b − a).
2 The weird example function is not integrable.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Bartle and Sherbert refer to functions that are integrable according
to our definition as Darboux integrable (BS §7.4, p. 225).

BS develop the integral using one value of the function within each
subinterval of a partition, rather than starting with upper and lower
sums. They refer to functions that are integrable in this sense as
Riemann integrable.

BS also prove (BS Theorem 7.4.11, p. 232) that a function is Riemann
integrable if and only if it is Darboux integrable. So the two
definitions are, in fact, equivalent.

In Math 4A03 you will define Lebesgue integrable, a more subtle
concept that makes it possible to attach meaning to “area of
R(f , a, b)” for the weird example function (among others), and to
precisely characterize functions that are Riemann integrable.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Theorem (Equivalent “ε-P” criterion for integrability)
A bounded function f : [a, b] → R is integrable on [a, b] iff for all
ε > 0 there is a partition P of [a, b] such that

U(f , P) − L(f , P) < ε .

(BS Theorem 7.4.8, p. 229)

Note: This theorem is just a restatement of the definition of
integrability. It is often more convenient to work with ε > 0 than
with sup’s and inf’s.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
( =⇒ ) Suppose the bounded function f is integrable, i.e.,

sup{L(f , P) : P a partition of [a, b]}

= inf{U(f , P) : P a partition of [a, b]} =
∫ b

a
f

Given ε > 0, since
∫ b

a
f is the least upper bound of the lower sums,

there is a partition P1 such that
∫ b

a
f = sup

P′
{L(f , P ′)} < L(f , P1) + ε

2 ,

i.e., such that − L(f , P1) < −
∫ b

a
f + ε

2 . (♡)

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
Similarly, there is a partition P2 such that

U(f , P2) < inf
P′

{U(f , P ′)} + ε

2 =
∫ b

a
f + ε

2 . (♢)

Therefore, putting together inequalities (♢) and (♡), we have

U(f , P2) − L(f , P1) <

∫ b

a
f + ε

2 −
∫ b

a
f + ε

2 = ε

2 + ε

2 = ε .

But that’s not quite what we need. We need, for a single partition P,
U(f , P) − L(f , P) < ε.

How should we proceed? Hint: Recall the partition lemma . . .
. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
Let P = P1 ∪ P2. Then the partition lemma implies that
L(f , P) ≥ L(f , P1), and U(f , P) ≤ U(f , P2), so

U(f , P) − L(f , P) ≤ U(f , P2) − L(f , P1)

<

∫ b

a
f + ε

2 −
∫ b

a
f + ε

2 = ε ,

which competes the proof that sup = inf =⇒ ε-P.

( ⇐= ) We now need to show that if a bounded function f satisfies the
ε-P definition of integrability then it also satisfies the sup = inf definition
of integrability.
Given ε > 0, we can choose a partition P (depending on ε) such that

U(f , P) − L(f , P) < ε .
. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of equivalence of “sup = inf” and “ε-P” definitions of integrability.
Now, for any partition, and in particular for P, we have

L(f , P) ≤ sup
P′

{L(f , P ′)} ≤ inf
P′

{U(f , P ′)} ≤ U(f , P) ,

We can temporarily write this more simply as
L ≤ S ≤ I ≤ U

Subtracting S from this chain of inequalities implies
L − S ≤ 0 ≤ I − S ≤ U − S

Now note that L ≤ S implies U − S ≤ U − L, so we have
0 ≤ I − S ≤ U − L

i.e., 0 ≤ inf
P′

{U(f , P ′)}− sup
P′

{L(f , P ′)} ≤ U(f , P)−L(f , P) < ε .

But by hypothesis, such a partition P can be found for any given ε > 0.
Therefore, infP′{U(f , P ′)} = supP′{L(f , P ′)}.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Example
Suppose b > 0 and f (x) = x for all x ∈ R. Prove, using only the
definition of the integral via sup = inf or ε-P, that

∫ b

0
f = b2

2 .

(This exercise should help you appreciate the Fundamental
Theorem of Calculus.)

Note: If working through the above example doesn’t convince you
of the power of the Fundamental Theorem of Calculus, try
computing

∫ b
0 x2 dx directly from the definition of the integral.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫

M
dω =

∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 9
Integration III

Monday 27 January 2025

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 2 has been posted on the course web site.
The participation deadline is Monday 3 Feb 2025 @ 11:25am.

On Friday this week, the class will be a Q&A session with the
TA. It’s a great opportunity to ask questions about
Assignment 2, or anything else.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
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Last time. . .

Rigorous development of the integral:
Definition: integrable.

Example: non-integrable function.

Theorem: Equivalent “ε-P” definition of integrable.

Note: The different equivalent definitions are most convenient
in different contexts, e.g.,

Proving non-integrability of the weird example was easiest
using the sup-inf definition.
Computing the value of

∫ b
0 x dx is easiest using the ε-P

definition.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Integrals: Integrable vs Continuous vs
Differentiable

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Integral theorems
Theorem (continuous =⇒ integrable)
If f is continuous on [a, b] then f is integrable on [a, b].

Rough work to prepare for proof:

U(f , P) − L(f , P) =
n∑

i=1
(Mi − mi)(ti − ti−1)

Given ε > 0, choose a partition P that is so fine that Mi − mi < ε
for all i (possible because f is continuous and bounded). Then

U(f , P) − L(f , P) < ε
n∑

i=1
(ti − ti−1) = ε(b − a) .

Not quite what we want. So choose the partition P such that
Mi − mi < ε/(b − a) for all i . To get that, choose P such that

|f (x) − f (y)| <
ε

2(b − a) if |x − y | < max
1≤i≤n

(ti − ti−1),

which we can do because f is uniformly continuous on [a, b].
Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration III 47/54

Integral theorems

Proof that continuous =⇒ integrable (cont.)
Since f is continuous on the closed interval [a, b], it is bounded on
[a, b] (which is the first requirement to be integrable on [a, b]).

Also, since f is continuous on [a, b], it is uniformly continuous on
[a, b]. ∴ ∀ε > 0 ∃δ > 0 such that ∀x , y ∈ [a, b],

|x − y | < δ =⇒ |f (x) − f (y)| <
ε

2(b − a) .

Now choose a partition of [a, b] such that the length of each
subinterval [ti−1, ti ] is less than δ, i.e., ti − ti−1 < δ. Then, for
any x , y ∈ [ti−1, ti ], we have |x − y | < δ and therefore

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integral theorems

Proof that continuous =⇒ integrable (cont.)

|f (x) − f (y)| <
ε

2(b − a) ∀x , y ∈ [ti−1, ti ] .

∴ Mi − mi ≤ ε

2(b − a) <
ε

b − a i = 1, . . . , n.

Since this is true for all i , it follows that

U(f , P) − L(f , P) =
n∑

i=1
(Mi − mi)(ti − ti−1)

<
ε

b − a

n∑

i=1
(ti − ti−1) = ε

b − a (b − a) = ε .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Integral segmentation)
Let a < c < b. If f is integrable on [a, b], then f is integrable on
[a, c] and on [c, b]. Conversely, if f is integrable on [a, c] and [c, b]
then f is integrable on [a, b]. Finally, if f is integrable on [a, b]
then ∫ b

a
f =

∫ c

a
f +

∫ b

c
f . (♡)

(a good exercise)

This theorem motivates these definitions:
∫ a

a
f = 0 and if a > b then

∫ b

a
f = −

∫ a

b
f .

Then (♡) holds for any a, b, c ∈ R.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Algebra of integrals – a.k.a.
∫ b

a is a linear operator)

If f and g are integrable on [a, b] and c ∈ R then f + g and cf are
integrable on [a, b] and

1
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g;

2
∫ b

a
cf = c

∫ b

a
f .

(proofs are relatively easy; good exercises) (BS Theorem 7.1.5, p. 204)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Integral of a product)
If f and g are integrable on [a, b] then fg is integrable on [a, b].

(compared to integral of a sum, proof is much harder; tough exercise)

Note:
There is no “product rule” for integrals. While f and g
integrable does imply fg integrable, we cannot write the
integral of the product fg in terms of the integrals of the
factors f and g .

The closest we can come to a product formula is integration
by parts, which arises from the Fundamental Theorem of
Calculus together with the product rule for derivatives.
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Properties of the integral

Lemma (Integral bounds)
Suppose f is integrable on [a, b]. If m ≤ f (x) ≤ M for all
x ∈ [a, b] then

m(b − a) ≤
∫ b

a
f ≤ M(b − a) .

Proof.
For any partition P, we must have m ≤ mi ∀i and M ≥ Mi ∀i .

∴ m(b − a) ≤ L(f , P) ≤ U(f , P) ≤ M(b − a) ∀P

∴ m(b − a) ≤ sup{L(f , P)} =
∫ b

a
f = inf{U(f , P)}

≤ M(b − a) .
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Properties of the integral

Theorem (Integrals are continuous)
If f is integrable on [a, b] and F is defined on [a, b] by

F (x) =
∫ x

a
f ,

then F is continuous on [a, b].

Proof
Let’s first consider x0 ∈ [a, b) and show F is continuous from
above at x0, i.e., limx→x+

0
F (x) = F (x0). If x ∈ (x0, b] then

(♡) =⇒ F (x) − F (x0) =
∫ x

a
f −

∫ x0

a
f =

∫ x

x0
f . (*)

. . . continued. . .
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Properties of the integral

Proof that integrals are continuous (cont.)
Since f is integrable on [a, b], it is bounded on [a, b], so ∃M > 0
such that

−M ≤ f (x) ≤ M ∀x ∈ [a, b],

from which the integral bounds lemma implies

−M(x − x0) ≤
∫ x

x0
f ≤ M(x − x0) ,

∴ (∗) =⇒ − M(x − x0) ≤ F (x) − F (x0) ≤ M(x − x0) .

∴ For any ε > 0, we can ensure |F (x) − F (x0)| < ε by requiring
0 ≤ x − x0 < ε/M, which proves limx→x+

0
F (x) = F (x0).

A similar argument starting from x0 ∈ (a, b] and x ∈ [a, x0) yields
limx→x−

0
F (x) = F (x0). Thus, “integrals are continuous”.
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