Game values and (sur)real numbers

Jonathan Dushoff, McMaster University dushoff@mcmaster.ca

McMaster Math 3A

April 2019

Outline

Introduction

Combinatoric games

Adding games

Ordering games

Values and numbers

Beyond numbers

GOALS

- Describe:
- Combinatoric games
- Surreal numbers
- Where the real numbers fit in
- Stay on this side of sanity

Game theory

- Classic game theory is the theory of games with imperfect information
- Nash equilibria and so on

Combinatorial game theory

- The analysis of games with perfect information
- ... accidentally led to some of the most beautiful theories of analysis

Hackenbush

- On your turn, you remove one line
- Lines no longer connected to ground are removed
- bLue lines can be removed by Left
- Red lines can be removed by Right
- greeN lines can be removed by aNyone

Domineering

- On your turn, you place a domino
- Left places verticaL dominoes
- Right places hoRizontal dominoes

Resources

- On Numbers and Games, Conway
- Surreal Numbers, Knuth
- Winning Ways, Berlekamp, Conway, Guy

Review

- We define the real numbers by:
- Building the integers as nested sets
- Building the rationals as equivalence classes of ordered pairs of integers
- Building the reals as cuts of the rationals
- With deterministic games, we build all this at once
- ... and much more!

Outline

Introduction

Combinatoric games

Adding games

Ordering games

Values and numbers

Beyond numbers

Axiom 1

- A game is:
- a set of options for the Left player, and a set of options for the Right player
- $X=\left(X^{L} \mid X^{R}\right)$
- Options are previously defined games
- So, what are some games?

Some games

- A set of options for the Left player, and a set of options for the Right player
- $(\emptyset \mid \emptyset)=(\mid)$
- 0
- $(0 \mid)$
- 1
- (|0)
- -1
- (0|0)
- *

How to play a game?

- If it's your turn, you choose an option
- It's then the other player's turn in that game
- If you have no options than you lose

Outline

Introduction

Combinatoric games

Adding games

Ordering games

Values and numbers

Beyond numbers

Adding games

Axiom 2

- $A+B=\left(A+b^{L}, a^{L}+B \mid A+b^{R}, a^{R}+B\right)$
- In other words, left can pick an left option from B and add it to A (and so on)
- This is perfectly well defined, and beautifully inductive
- All games are defined in terms of previously defined games

Definition

- The negative of a game reverses the roles of Left and Right
- This has a nice, recursive definition
- $A=\left(A^{L} \mid A^{R}\right)$
- $-A \equiv\left(-A^{R} \mid-A^{L}\right)$
- Again, relying on beautiful induction

Outline

Introduction

Combinatoric games

Adding games

Ordering games

Values and numbers

Beyond numbers

Ordering games

- We say that games are better if they are better for Left
- ... in the context of adding games together

Axiom 3

- Adding game A to an existing game can't hurt Left unless
- Right has a good move
- $A \geq 0$ unless
- Some option $a^{R} \leq 0$ Def: $-a^{R} \geq 0$
- In other words, this game can't hurt me unless
- you can move to a game that can't hurt you

Partial ordering

- Def: $A \geq B \Longleftrightarrow A-B \geq 0$
- Def: $A+-B \geq 0$
- $A \geq B B \geq A \Longrightarrow A=B$
- $A \geq B B \nsupseteq A \Longrightarrow A>B$
- $A \nsupseteq B B \geq A \Longrightarrow A<B$
- $A \nsupseteq B B \nsupseteq A \Longrightarrow A \| B$

$0=0$

- Any game that is "equal to" 0 can't hurt either player
- If I add a game which the second player wins, I don't change the outcome of any game
- Similarly, if $A=B$, then adding A has the same effect on any game as adding B
- This is not necessarily true if $A \| B$

Outline

Introduction

Combinatoric games

Adding games

Ordering games

Values and numbers

Beyond numbers

Equivalence classes

- We define a game value as an equivalence class of games
- The rational numbers were defined for you in a similar way:
- $1 / 2$ is the equivalence class of ordered pairs $(1,2) ;(2,4) ; \ldots$

Numbers

- The values l've defined are a very cool group.
- But not very numerical:
- $*+*=0$
- Games have "numerical" value if you can count free moves, which works when moving is always bad.

Axiom 1 N : what is a (surreal) number?

- Recall: a game is: a set of options for the Left player, and a set of options for the Right player
- $x=\left(x^{L} \mid x^{R}\right)$
- Options are previously defined games
- A number-game is: a set of options for the Left player, and a set of options for the Right player
- $x=\left(x^{L} \mid x^{R}\right)$, s.t. no $x^{L} \geq x^{R}$
- Options are previously defined number-games
- A number is a value associated with a class of number-games

Integers

- We create the natural numbers as $n+1=(n \mid)$
- Negative integers are then defined by the negation rule:
- $-n-1=(\mid-n)$

Binary fractions

- We can create any finite binary expansion
- $(2 k+1) / 2^{n+1}=\left(k / 2^{n} \mid(k+1) / 2^{n}\right)$
- e.g., $7 / 16=(3 / 8 \mid 1 / 2)$

The limit

- What happens if we take the limit of all numbers we can make in a finite number of steps?
- We can get all the reals ...
- e.g., $1 / 3=(0,1 / 4,5 / 16, \ldots \mid 1,1 / 2,3 / 8, \ldots)$
- plus some very weird stuff
- $\omega=(0,1,2, \ldots \mid)$
- $1 / \omega=(0 \mid 1,1 / 2,1 / 4, \ldots)$

0.999...

- Is 0.999... really equal to 1 ?
- Depends on your definitions
- What is $0.1111 \ldots$ (base 2) as a game?

Ordinals

- You can take as many limits as you want, and get all of the infinite ordinals, and a wide range of infinitesimals

Axiom 1R: what is a (real) number?

- Recall: a number is: a set of options for the Left player, and a set of options for the Right player
- $x=\left(x^{L} \mid x^{R}\right)$, s.t.:
- no $x^{L} \geq x^{R}$
- Options are previously defined numbers
- A real number is: a set of options for the Left player, and a set of options for the Right player
- $x=\left(x^{L} \mid x^{R}\right)$, s.t.:
- no $x^{L} \geq x^{R}$
- x^{L} has a largest element iff x^{R} has a smallest element
- Options are previously defined real numbers

Axiom 4 (not shown)

- You can define multiplication
- Motivation: $\left(x-x^{S}\right)\left(y-y^{S}\right)$ has a known sign
-and construct division
- Insane simultaneous induction on simpler quotients, and on the main quotient
- The surreal numbers are a field

Surreal arithmetic

- $\omega-1$,
- $\omega / 2, \sqrt{(} \omega)$
- Even crazier stuff: $\sqrt[3]{\omega-1}-\pi / \omega$

Outline

Introduction

Combinatoric games

Adding games

Ordering games

Values and numbers

Beyond numbers

Micro-infinitesimals

- If we allow values that aren't numbers, we have infinitesimals that are smaller than the smallest infinitesimal numbers

Temperature

- Cold games are games where moving makes the position worse for your side
- Number games are games that are (recursively) cold
- Red-blue hackenbush
- Neutral games are games where the positions are the same for left and right
- The theory of Nim values
- Green hackenbush
- Hot games are games where there can be a positive value to moving
- Example: domineering

Conclusion

- We can define a bewildering array of games with a simple, recursive definition
- By defining addition, we can organize these into values, which form a group under sensible game addition
- By recursively requiring making a move to have a cost, we identify a subset that we call the surreal numbers
- these contain the reals, the infinite ordinals and a consistent set of infinitesimals
- These surreal numbers form a field
- There are also interesting game values that are not numbers
- Game values are the best thing

Beyond the conclusions

- The option framework is sort of a generalization of
- the Cantor framework for the ordinals
- (building up, never a right option)
- the Dedekind framework for the reals
- (filling in, always a right option)

Simplicity theorem (numbers)

- The value of $\left(x^{L} \mid x^{R}\right)$ is the simplest, non-prohibited value
- Prohibited: if if is larger than some x^{R} or less than some x^{L}
- Simplest: earliest created; it has no options that are not prohibited
- ... or else those would be simpler, non-prohibited values

More simplicity

- If no non-prohibited value already exists, then the value is - $\left(x^{L}+x^{R}\right) / 2$, if both exist
- $x^{L}+1$, if only x^{L} exists

Finitude

- Any game takes a finite number of moves to play
- Induction: if I have a new game, and play it, it will take one more move than the option I chose
- This number is not necessarily bounded.
- In particular, a number-game that does not correspond to a finite binary expansion has an unbounded number of possible moves
- (depending on what games it is added to)

