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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 26
Integration

Friday 15 March 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 5 is due on
Monday 25 March 2019 @ 11:30am via crowdmark.

Test 2 is on Monday 1 April 2019, 7:00pm–8:30pm in
MDCL 1110.

Assignment 6 will be due on Monday 8 April 2019 @
11:30am via crowdmark.

Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

NY Times article by Steven Stogatz in honour of Pi Day.

Great example of mathematical science writing for the general
public.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/mdcl-1110
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://www.nytimes.com/2019/03/14/science/pi-math-geometry-infinity.html


Integration 4/79

Last time. . .

Proved Mean Value Theorem.

Proved Darboux’s Theorem.

Sketched proof of Inverse Function Theorem.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration 5/79

Integration

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integration

f

R(f , a, b)

(
a, 0

) (
b, 0

)

“Area of region R(f , a, b)” is actually a very subtle concept.

We will only scratch the surface of it.

Textbook presentation of integral is different (but equivalent).
Our treatment is closer to that in M. Spivak “Calculus” (2008).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integration

f

(
a, 0

) (
b, 0

)

Contribution to “area of R(f , a, b)” is positive or negative
depending on whether f is positive or negative.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration 8/79

Lower sum

a = t0 t1 t2 t3 t4 = b

m1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Upper sum

a = t0 t1 t2 t3 t4 = b

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

a = t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 = b

m1

M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

m1
M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Lower and upper sums

m1
M1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Partition)

Let a < b. A partition of the interval [a, b] is a finite collection of
points in [a, b], one of which is a, and one of which is b.

We normally label the points in a partition

a = t0 < t1 < · · · < tn−1 < tn = b ,

so the ith subinterval in the partition is

[ti−1, ti ] .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Lower and upper sums)

Suppose f is bounded on [a, b] and P = {t0, . . . , tn} is a partition
of [a, b]. Let

mi = inf
{
f (x) : x ∈ [ti−1, ti ]

}
,

Mi = sup
{
f (x) : x ∈ [ti−1, ti ]

}
.

The lower sum of f for P, denoted by L(f ,P), is defined as

L(f ,P) =
n∑

i=1

mi (ti − ti−1) .

The upper sum of f for P, denoted by U(f ,P), is defined as

U(f ,P) =
n∑

i=1

Mi (ti − ti−1) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Relationship between motivating sketch and rigorous definition
of lower and upper sums:

The lower and upper sums correspond to the total areas of
rectangles lying below and above the graph of f in our
motivating sketch.

However, these sums have been defined precisely
without any appeal to a concept of “area”.

The requirement that f be bounded on [a, b] is essential in
order that all the mi and Mi be well-defined.

It is also essential that the mi and Mi be defined as inf’s and
sup’s (rather than maxima and minima) because f was not
assumed continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Relationship between motivating sketch and rigorous definition
of lower and upper sums:

Since mi ≤ Mi for each i , we have

mi (ti − ti−1) ≤ Mi (ti − ti−1) . i = 1, . . . , n.

∴ For any partition P of [a, b] we have

L(f ,P) ≤ U(f ,P),

because

L(f ,P) =
n∑

i=1

mi (ti − ti−1) ,

U(f ,P) =
n∑

i=1

Mi (ti − ti−1) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Relationship between motivating sketch and rigorous definition
of lower and upper sums:

More generally, if P1 and P2 are any two partitions of [a, b],
it ought to be true that

L(f ,P1) ≤ U(f ,P2),

because L(f ,P1) should be ≤ area of R(f , a, b), and U(f ,P2)
should be ≥ area of R(f , a, b).

But “ought to” and “should be” prove nothing, especially
since we haven’t yet even defined “area of R(f , a, b)”.

Before we can define “area of R(f , a, b)”, we need to prove
that L(f ,P1) ≤ U(f ,P2) for any partitions P1,P2 . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Lemma

If partition P ⊆ partition Q (i.e., if every point of P is also in Q),
then L(f ,P) ≤ L(f ,Q) and U(f ,P) ≥ U(f ,Q).

a = t0 t1 t2 = b
a = u0 u1 u2 u3 u4 u5 = b

f

m′′
m′

P = {t0, t1, t2}
Q = {u0(= t0), u1, u2(= t1), u3, u4, u5(= t2)}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Lemma

As a first step, consider the special case in which the finer partition
Q contains only one more point than P:

P = {t0, . . . , tn} ,
Q = {t0, . . . , tk−1, u, tk , . . . , tn} ,

where

a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b .

Let
m′ = inf

{
f (x) : x ∈ [tk−1, u]

}
,

m′′ = inf
{
f (x) : x ∈ [u, tk ]

}
.

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Lemma (cont.)

Then L(f ,P) =
n∑

i=1

mi (ti − ti−1) ,

and L(f ,Q) =
k−1∑

i=1

mi (ti − ti−1) + m′(u − tk−1)

+ m′′(tk − u) +
n∑

i=k+1

mi (ti − ti−1) .

∴ To prove L(f ,P) ≤ L(f ,Q), it is enough to show

mk(tk − tk−1) ≤ m′(u − tk−1) + m′′(tk − u) .

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Lemma (cont.)

Now note that since
{
f (x) : x ∈ [tk−1, u]

}
⊆

{
f (x) : x ∈ [tk−1, tk ]

}
,

the RHS might contain some additional smaller numbers, so we
must have

mk = inf
{
f (x) : x ∈ [tk−1, tk ]

}

≤ inf
{
f (x) : x ∈ [tk−1, u]

}
= m′ .

Thus, mk ≤ m′, and, similarly, mk ≤ m′′.

∴ mk(tk − tk−1) = mk(tk − u + u − tk−1)

= mk(u − tk−1) + mk(tk − u)

≤ m′(u − tk−1) + m′′(tk − u) ,

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Proof of Lemma (cont.)

which proves (in this special case where Q contains only one more
point than P) that L(f ,P) ≤ L(f ,Q).

We can now prove the general case by adding one point at a time.

If Q contains ` more points than P, define a sequence of partitions

P = P0 ⊂ P1 ⊂ · · · ⊂ P` = Q

such that Pj+1 contains exactly one more point that Pj . Then

L(f ,P) = L(f ,P0) ≤ L(f ,P1) ≤ · · · ≤ L(f ,P`) = L(f ,Q) ,

so L(f ,P) ≤ L(f ,Q).

(Proving U(f ,P) ≥ U(f ,Q) is similar: check!)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Theorem (Partition Theorem)

Let P1 and P2 be any two partitions of [a, b]. If f is bounded on
[a, b] then

L(f ,P1) ≤ U(f ,P2) .

Proof.

This is a straightforward consequence of the partition lemma.

Let P = P1 ∪ P2, i.e., the partition obtained by combining all the
points of P1 and P2.

Then
L(f ,P1) ≤ L(f ,P) ≤ U(f ,P) ≤ U(f ,P2) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics
∫

M

dω =

∫

∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 27
Integration II

Monday 18 March 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Part of Assignment 5 is posted on the course web site
(more to come). It is due on
Monday 25 March 2019 @ 11:30am via crowdmark.

Test 2 is on Monday 1 April 2019, 7:00pm–8:30pm in
MDCL 1110.

Assignment 6 will be due on Monday 8 April 2019 @
11:30am via crowdmark.

Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/mdcl-1110
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Rigorous development of the integral

Important inferences that follow from the partition theorem:

For any partition P ′, the upper sum U(f ,P ′) is an upper
bound for the set of all lower sums L(f ,P).

∴ sup
{
L(f ,P) : P a partition of [a, b]

}
≤ U(f ,P ′) ∀P ′

∴ sup
{
L(f ,P)

}
≤ inf

{
U(f ,P)

}

∴ For any partition P ′,

L(f ,P ′) ≤ sup
{
L(f ,P)

}
≤ inf

{
U(f ,P)

}
≤ U(f ,P ′)

If sup
{
L(f ,P)

}
= inf

{
U(f ,P)

}
then we can define “area of

R(f , a, b)” to be this number.

Is it possible that sup
{
L(f ,P)

}
< inf

{
U(f ,P)

}
?

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration II 30/79

Rigorous development of the integral

Example

∃? f : [a, b]→ R such that sup
{
L(f ,P)

}
< inf

{
U(f ,P)

}

Let

f (x) =

{
1 x ∈ Q ∩ [a, b],

0 x ∈ Qc ∩ [a, b].

If P = {t0, . . . , tn} then mi = 0 (∵ [ti−1, ti ] ∩Qc 6= ∅),
and Mi = 1 (∵ [ti−1, ti ] ∩Q 6= ∅).

∴ L(f ,P) = 0 and U(f ,P) = b − a for any partition P.

∴ sup
{
L(f ,P)

}
= 0 < b − a = inf

{
U(f ,P)

}
.

Can we define “area of R(f , a, b)” for such a weird function?
Yes, but not in this course!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Definition (Integrable)

A function f : [a, b]→ R is said to be integrable on [a, b] if it is
bounded on [a, b] and

sup
{
L(f ,P) : P a partition of [a, b]

}

= inf
{
U(f ,P) : P a partition of [a, b]

}
.

In this case, this common number is called the integral of f on
[a, b] and is denoted ∫ b

a
f

Note: If f is integrable then for any partition P we have

L(f ,P) ≤
∫ b

a

f ≤ U(f ,P) ,

and
∫ b

a
f is the unique number with this property.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Notation:
∫ b

a
f (x) dx means precisely the same as

∫ b

a
f .

The symbol “dx” has no meaning in isolation
just as “x →” has no meaning except in limx→a f (x).

It is not clear from the definition which functions are
integrable.

The definition of the integral does not itself indicate how to
compute the integral of any given integrable function. So far,
without a lot more effort we can’t say much more than these
two things:

1 If f (x) ≡ c then f is integrable on [a, b] and
∫ b

a
f = c · (b− a).

2 The weird example function is not integrable.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

A function that is integrable according to our definition is
usually said to be Riemann integrable, to distinguish this
definition from other definitions of integrability.

In Math 4A03 you will define “Lebesgue integrable”, a more
subtle concept that makes it possible to attach meaning to
“area of R(f , a, b)” for the weird example function (among
others), and to precisely characterize functions that are
Riemann integrable.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Rigorous development of the integral

Theorem (Equivalent condition for integrability)

A bounded function f : [a, b]→ R is integrable on [a, b] iff for all
ε > 0 there is a partition P of [a, b] such that

U(f ,P)− L(f ,P) < ε .

Proof.

2016 Assignment 5.

Note: This theorem is just a restatement of the definition of
integrability. It is often more convenient to work with ε > 0 than
with sup’s and inf’s.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integral theorems

Theorem

If f is continuous on [a, b] then f is integrable on [a, b].

Rough work to prepare for proof:

U(f ,P)− L(f ,P) =
n∑

i=1

(Mi −mi )(ti − ti−1)

Given ε > 0, choose a partition P that is so fine that Mi −mi < ε
for all i . Then

U(f ,P)− L(f ,P) < ε

n∑

i=1

(ti − ti−1) = ε(b − a) .

Not quite what we want. So choose the partition P such that
Mi −mi < ε/(b − a) for all i . To get that, choose P such that

|f (x)− f (y)| < ε

2(b − a)
if |x − y | < max

1≤i≤n
(ti − ti−1),

which we can do because f is uniformly continuous on [a, b].
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integral theorems

Proof that continuous =⇒ integrable

Since f is continuous on the compact set [a, b], it is bounded on
[a, b] (which is the first requirement to be integrable on [a, b]).

Also, since f is continuous on the compact set [a, b], it is uniformly
continuous on [a, b]. ∴ ∀ε > 0 ∃δ > 0 such that ∀x , y ∈ [a, b],

|x − y | < δ =⇒ |f (x)− f (y)| < ε

2(b − a)
.

Now choose a partition of [a, b] such that the length of each
subinterval [ti−1, ti ] is less than δ, i.e., ti − ti−1 < δ. Then, for any
x , y ∈ [ti−1, ti ] we have |x − y | < δ and therefore

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Integral theorems

Proof that continuous =⇒ integrable (cont.)

|f (x)− f (y)| < ε

2(b − a)
∀x , y ∈ [ti−1, ti ] .

∴ Mi −mi ≤
ε

2(b − a)
<

ε

b − a
i = 1, . . . , n.

Since this is true for all i , it follows that

U(f ,P)− L(f ,P) =
n∑

i=1

(Mi −mi )(ti − ti−1)

<
ε

b − a

n∑

i=1

(ti − ti−1) =
ε

b − a
(b − a) = ε .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Integral segmentation)

Let a < c < b. If f is integrable on [a, b], then f is integrable on
[a, c] and on [c , b]. Conversely, if f is integrable on [a, c] and [c, b]
then f is integrable on [a, b]. Finally, if f is integrable on [a, b] then

∫ b

a
f =

∫ c

a
f +

∫ b

c
f . (♥)

(a good exercise)

This theorem motivates these definitions:
∫ a

a
f = 0 and

∫ b

a
f = −

∫ a

b
f if a > b.

Then (♥) holds for any a, b, c ∈ R.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics
∫

M

dω =

∫

∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 28
Integration III

Wednesday 20 March 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 5 is due on
Monday 25 March 2019 @ 11:30am via crowdmark.

Test 2 is on Monday 1 April 2019, 7:00pm–8:30pm in
MDCL 1110.

Assignment 6 will be due on Monday 8 April 2019 @
11:30am via crowdmark.

Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/mdcl-1110
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Last time. . .

Rigorous development of integral:

Definition: integrable.

Example: non-integrable function.

Theorem: Equivalent “ε-P” definition of integrable.

Theorem: continuous =⇒ integrable.

Theorem: Integral segmentation.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Algebra of integrals – a.k.a.
∫ b
a is a linear operator)

If f and g are integrable on [a, b] and c ∈ R then f + g and cf are
integrable on [a, b] and

1

∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g;

2

∫ b

a
cf = c

∫ b

a
f .

(proofs are relatively easy; good exercises)

Theorem (Integral of a product)

If f and g are integrable on [a, b] then fg is integrable on [a, b].

(proof is much harder; tough exercise)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Lemma (Integral bounds)

Suppose f is integrable on [a, b]. If m ≤ f (x) ≤ M for all
x ∈ [a, b] then

m(b − a) ≤
∫ b

a
f ≤ M(b − a) .

Proof.

For any partition P, we must have m ≤ mi ∀i and M ≥ Mi ∀i .

∴ m(b − a) ≤ L(f ,P) ≤ U(f ,P) ≤ M(b − a) ∀P

∴ m(b−a) ≤ sup{L(f ,P)} =

∫ b

a
f = inf{U(f ,P)} ≤ M(b−a) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Theorem (Integrals are continuous)

If f is integrable on [a, b] and F is defined on [a, b] by

F (x) =

∫ x

a
f ,

then F is continuous on [a, b].

Proof

Let’s first consider x0 ∈ [a, b) and show F is continuous from
above at x0, i.e., limx→x+0

F (x) = F (x0). If x ∈ (x0, b] then

(♥) =⇒ F (x)− F (x0) =

∫ x

a
f −

∫ x0

a
f =

∫ x

x0

f . (*)

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the integral

Proof (cont.)

Since f is integrable on [a, b], it is bounded on [a, b], so ∃M > 0
such that

−M ≤ f (x) ≤ M ∀x ∈ [a, b],

from which the integral bounds lemma implies

−M(x − x0) ≤
∫ x

x0

f ≤ M(x − x0) ,

∴ (∗) =⇒ −M(x − x0) ≤ F (x)− F (x0) ≤ M(x − x0) .

∴ For any ε > 0 we can ensure |F (x)− F (x0)| < ε by requiring
0 ≤ x − x0 < ε/M, which proves limx→x+0

F (x) = F (x0).

A similar argument starting from x0 ∈ (a, b] and x ∈ [a, x0) yields
limx→x−0

F (x) = F (x0). Thus, “integrals are continuous”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus)

Let f be integrable on [a, b], and define F on [a, b] by

F (x) =

∫ x

a
f .

If f is continuous at c ∈ [a, b], then F is differentiable at c, and

F ′(c) = f (c) .

Note: If c = a or b, then F ′(c) is understood to mean the right-
or left-hand derivative of F .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

c c + h

mh

Mh

f integrable on [a, b]
and continuous at c

F (c + h)− F (c) ' f (c + h) · h
and lim

h→0
f (c + h) = f (c)

=⇒ lim
h→0

F (c + h)− F (c)

h
= f (c)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus

Suppose c ∈ [a, b), and 0 < h ≤ b − c . Then the integral
segmentation theorem implies

F (c + h)− F (c) =

∫ c+h

c
f .

Motivated by the sketch, define

mh = inf
{
f (x) : x ∈ [c , c + h]

}
,

Mh = sup
{
f (x) : x ∈ [c, c + h]

}
.

Then the integral bounds lemma implies

mh · h ≤
∫ c+h

c
f ≤ Mh · h ,

. . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus (cont.)

and hence

mh ≤
F (c + h)− F (c)

h
≤ Mh .

This inequality is true for any integrable function. However,
because f is continuous at c , we have

lim
h→0+

mh = lim
h→0+

Mh = f (c) ,

so the squeeze theorem implies

F ′+(c) = lim
h→0+

F (c + h)− F (c)

h
= f (c) .

A similar argument for c ∈ (a, b] and c − a ≤ h < 0 yields
F ′−(c) = f (c).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Corollary

If f is continuous on [a, b] and f = g ′ for some function g, then
∫ b

a
f = g(b)− g(a) .

Proof.

Let F (x) =
∫ x
a f . Then throughout [a, b] we have F ′ = f = g ′.

∴ ∃c ∈ R such that F = g + c (2016 Assignment 5).

∴ F (a) = g(a) + c.

But F (a) =
∫ a
a f = 0, so c = −g(a).

∴ F (x) = g(x)− g(a).

This is true, in particular, for x = b, so
∫ b
a f = g(b)− g(a).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)

If f is integrable on [a, b] and f = g ′ for some function g, then
∫ b

a
f = g(b)− g(a) .

Notes:

This looks like the corollary to the first fundamental theorem,
except that f is only assumed integrable, not continuous.

Recall from Darboux’s theorem that if f = g ′ for some g then f has
the intermediate value property, but f need not be continuous.

The proof of the second fundamental theorem is completely
different from the corollary to the first, because we cannot use the
first fundamental theorem (which assumed f is continuous).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Fundamental Theorem of Calculus

Proof of Second Fundamental Theorem of Calculus

Let P = {t0, . . . , tn} be any partition of [a, b]. By the Mean Value
Theorem, for each i = 1, . . . , n, ∃ xi ∈ [ti−1, ti ] such that

g(ti )− g(ti−1) = g ′(xi )(ti − ti−1) = f (xi )(ti − ti−1) .

Define mi and Mi as usual. Then mi ≤ f (xi ) ≤ Mi ∀i , so

mi (ti − ti−1) ≤ f (xi )(ti − ti−1) ≤ Mi (ti − ti−1) ,

i.e., mi (ti − ti−1) ≤ g(ti )− g(ti−1) ≤ Mi (ti − ti−1) .

∴
n∑

i=1

mi (ti − ti−1) ≤
n∑

i=1

(
g(ti )− g(ti−1)

)
≤

n∑

i=1

Mi (ti − ti−1)

i.e., L(f ,P) ≤ g(b)− g(a) ≤ U(f ,P)

for any partition P. ∴ g(b)− g(a) =
∫ b

a
f .

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration IV 53/79

Mathematics
and Statistics
∫

M

dω =

∫

∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 29
Integration IV

Friday 22 March 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Please consider. . .

5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor
the patterns of respiratory illness, over-the-counter drug
use, and social contact within the McMaster community.
There are no risks to filling out this survey, and your par-
ticipation is voluntary. You do not need to answer any
questions that make you uncomfortable, and all informa-
tion provided will be kept strictly confidential. Thanks for
participating.

–Dr. Marek Smieja (Infectious Diseases)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://surveys.mcmaster.ca/limesurvey/index.php/893454
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Announcements

Assignment 5 is due on
Monday 25 March 2019 @ 11:30am via crowdmark.

Test 2 is on Monday 1 April 2019, 7:00pm–8:30pm in
MDCL 1110.

Assignment 6 will be due on Monday 8 April 2019 @
11:30am via crowdmark.

Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/mdcl-1110
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Last time. . .

Rigorous development of integral:

Algebra of integrals.

Integral bounds lemma.

Integrals are continuous.

First Fundamental Theorem of Calculus.

Second Fundamental Theorem of Calculus.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What useful things can we do with integrals?

Compute areas of complicated shapes: find anti-derivatives
and use the second fundamental theorem of calculus.

Define trigonometric functions (rigorously).

Define logarithm and exponential functions (rigorously).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What is π ?

f (x) =
√
1− x2

Area
π

2

Definition

π ≡ 2

∫ 1

−1

√
1− x2 dx .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are cos and sin ?
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Definition (Sectoral area)

If x ∈ [−1, 1] then A(x) =
x
√

1− x2

2
+

∫ 1

x

√
1− t2 dt .

Note: A(−1) = π/2, A(1) = 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are cos and sin ?

θ

(cos θ, sin θ)

x = cos θ

A(x) =
θ

2

Length of circular arc swept out by angle θ: θ

Area of sectoral region swept out by angle θ: θ/2

So, if θ ∈ [0, π] then we define cos θ to be the unique number in [−1, 1]
such that A(cos θ) = θ/2, and we define sin θ to be

√
1− (cos θ)2.

We must prove: given x ∈ [0, π] ∃! y ∈ [−1, 1] such that A(y) = x/2.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are cos and sin ?

Proof that ∀ x ∈ [0, π] ∃! y ∈ [−1, 1] such that A(y) = x/2:

Existence: A(1) = 0, A(−1) = π/2, and A is continuous. Hence by the
intermediate value theorem ∃ y ∈ [−1, 1] such that A(y) = x/2.

Uniqueness: A is differentiable on (−1, 1) and A′(x) < 0 on (−1, 1).

∴ On (−1, 1), A is decreasing, and hence one-to-one.

Definition (cos and sin)

If x ∈ [0, π] then cos x is the unique number in [−1, 1] such that
A(cos x) = x/2, and sin x =

√
1− (cos x)2.

These definitions are easily extended to all of R:

For x ∈ [π, 2π], define cos x = cos (2π − x) and sin x = − sin (2π − x).

Then, for x ∈ R \ [0, 2π] define cos x = cos (x mod 2π) and
sin x = sin (x mod 2π).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Trigonometric theorems

Given the rigorous definition of cos and sin, we can prove:

1 cos and sin are differentiable on R. Moreover, cos′ = − sin
and sin′ = cos.

2 sec, tan, csc and cot can all be defined in the usual way and
have all the usual properties.

3 The inverse function theorem allows us to define and compute
the derivatives of all the inverse trigonometric functions.

4 If f is twice differentiable on R, f ′′ + f = 0, f (0) = a
and f ′(0) = b, then f = a cos +b sin.

5 For all x , y ∈ R,

sin (x + y) = sin x cos y + cos x sin y ,

cos (x + y) = cos x cos y − sin x sin y .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Something deep that you know enough to prove

Extra Challenge Problem:
Prove that π is irrational.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration IV 64/79

What are log and exp ?

Consider the function
f (x) = 10x .

What exactly is this function?

In our mathematically näıve previous life, we just assumed that
f (x) is well-defined ∀ x ∈ R, and that f has a well-defined inverse
function,

f −1(x) = log10(x) .

But how are 10x and log10(x) defined for irrational x ?

Let’s review what we know. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

n ∈ N =⇒ 10n = 10 · · · 10︸ ︷︷ ︸
n times

n,m ∈ N =⇒ 10n · 10m = 10n+m

When we extend 10x to x ∈ Q, we want this product rule to be
preserved:

100 · 10n = 100+n = 10n =⇒ 100 = 1

10−n · 10n = 100 = 1 =⇒ 10−n =
1

10n

101/n · · · 101/n︸ ︷︷ ︸
n times

= 10 1/n···1/n
︸ ︷︷ ︸
n times

= 101 = 10 =⇒ 101/n =
n
√

10

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

Finally,

101/n · · · 101/n︸ ︷︷ ︸
m times

= 10 1/n···1/n
︸ ︷︷ ︸
m times

= 10m/n =⇒ 10m/n =
(

n
√

10
)m

Now we’re stuck. How do we extend this scheme to irrational x?

We need a more sophisticated idea.

Let’s try to find a function on all of R that satisfies

f (x + y) = f (x) · f (y) , ∀x , y ∈ R,
and f (1) = 10 .

It then follows that f (0) = 1 and, ∀ x ∈ Q, f (x) = [f (1)]x .

What additional properties can we impose on f (x) that will lead us
to a sensible definition of f (x) for all x ∈ R ?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

One approach is to insist that f is differentiable.

Then we can compute

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

h→0

f (x) · f (h)− f (x)

h

= f (x) · lim
h→0

f (h)− 1

h
= f (x) · f ′(0) ≡ α f (x)

So f ′(x) = α f (x), i.e., we have f ′ in terms of unknowns f and α.
So what?!?

Let’s look at the inverse function, f −1 (think “log10”):

(f −1)′(x) =
1

f ′(f −1(x))
=

1

α f (f −1(x))
=

1

α x

Holy $#@%! We have a simple formula for the derivative of f −1!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics
∫

M

dω =

∫

∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 30
Integration V

Monday 25 March 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Please consider. . .

5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey2/index.php/893454

Please complete this anonymous survey to help us monitor
the patterns of respiratory illness, over-the-counter drug
use, and social contact within the McMaster community.
There are no risks to filling out this survey, and your par-
ticipation is voluntary. You do not need to answer any
questions that make you uncomfortable, and all informa-
tion provided will be kept strictly confidential. Thanks for
participating.

–Dr. Marek Smieja (Infectious Diseases)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://surveys.mcmaster.ca/limesurvey2/index.php/893454
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Announcements

Assignment 5 was due today.

Test 2 is on Monday 1 April 2019, 7:00pm–8:30pm in
MDCL 1110.

Assignment 6 will be due on Monday 8 April 2019 @
11:30am via crowdmark.

Two problems have been posted so far. Definitely do these two
problems before the test.

Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://library.mcmaster.ca/cct/class-dir/mdcl-1110
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Last time. . .

Rigorous definition of trig functions.

Working towards rigorous definition of 10x for x ∈ R.

Discovered a simple formula for the derivative of f −1!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

Since we want log10 1 = 0, we should define log10 x as
(1/α)

∫ x
1 t−1 dt. Great idea, but we don’t know what α is.

So, let’s ignore α . . .
(and hope that what we end up with is log to some “natural” base).

Definition (Logarithm function)

If x > 0 then
log x =

∫ x

1

1

t
dt .

This function is strictly increasing (log′(x) > 0 for all x > 0)
so we can now define:

Definition (Exponential function)

exp = log−1 .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

With these rigorous defintions of log and exp, we can prove the
following as theorems:

1 If x , y > 0 then log (xy) = log x + log y .

2 If x , y > 0 then log (x/y) = log x − log y .

3 If n ∈ N and x > 0 then log (xn) = n log x .

4 For all x ∈ R, exp′(x) = exp(x).

5 For all x , y ∈ R, exp(x + y) = exp(x) · exp(y).

6 For all x ∈ Q, exp(x) = [exp(1)]x .

The last theorem above motivates:

Definition

e = exp(1) ,

ex = exp(x) for all x ∈ R.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What are log and exp ?

We can now give a rigorous definition of 10x for any x ∈ R.
In fact, we can do this for any a > 0.

Definition (ax)

If a > 0 and x is any real number then

ax = ex log a .

We then have the following theorems for any a > 0:

1 (ax)y = axy for all x , y ∈ R;

2 a0 = 1; a1 = a;

3 ax+y = ax · ay for all x , y ∈ R;

4 a−x = 1/ax for all x ∈ R;

5 if a > 1 then ax is increasing on R;

6 if 0 < a < 1 then ax is decreasing on R.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Using the integral to define useful functions rigorously

Just as we defined 10x via the definition of log x =
∫ x
1

1
t dt, we

could have defined the trigonometric functions starting from

arcsin x =

∫ x

0

1√
1− t2

dt , −1 < x < 1,

rather than the more complicated definition of cos via A(x).
Many common functions are defined as integrals of rational
functions of square roots.

Any compositions of trig functions, log, exp, rational functions
and radicals, are called elementary functions.

Most functions that turn up a lot in applications can be
defined rigorously via integrals of elementary functions. Such
functions are collectively called special functions.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Approximation by Polynomial Functions

Definition (Taylor polynomial)

If f is n times differentiable at a then the Taylor polynomial of
degree n for f at a is

Pn,a(x) = f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n .

Theorem (Taylor’s theorem)

Suppose f ′, . . . , f (n+1) are defined on [a, x ], and that Rn,a(x) is
defined by f (x) = Pn,a(x) + Rn,a(x) . Then

Rn,a(x) =
f (n+1)(t)

(n + 1)!
(x − a)n+1 , for some t ∈ (a, x) .

Note: The form of the remainder term here is known as the
Lagrange form of the remainder.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Approximation by Polynomial Functions

Example (Approximating e)

Use Taylor’s theorem to show that e can be approximated to
within 3

(n+1)! for any given n. Also show that 2 < e < 3.

Recall e = e1 = exp(1). ∴ e = 1 + 1 + 1
2! + · · ·+ 1

n! + Rn, where

Rn = et

(n+1)! for some t ∈ (0, 1). Since ex is increasing on (0, 1), we must

have et < e, so 1
(n+1)! < Rn <

e
(n+1)! . But we can’t estimate e using e.

Recall 1 = log e =
∫ e

1
1
t dt, and note log 4 =

∫ 4

1
1
t dt > 1, since

1
2 (2− 1) + 1

4 (4− 2) = 1 is a lower sum for f (t) = 1/t on [1, 4].

∴ log e < log 4, i.e., e < 4. (Similarly: Use
∫ 2

1
1
t dt to get e > 2.)

∴ 2 < e < 4 and Rn <
4

(n+1)! . Great, but what we actually want is

2 < e < 3 and Rn <
3

(n+1)! . . . . continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Approximation by Polynomial Functions

Example (Approximating e (cont.))

Given Rn <
4

(n+1)! , note that for n = 4 we have

0 < Rn <
4

5!
=

1

30
,

so applying Taylor’s theorem with n = 4 we get

e = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ Rn =

(
2 +

17

24

)
+ Rn

<
(
2 +

17

24

)
+

1

30
< 3 .

Thus e < 3, and consequently

Rn <
e

(n + 1)!
=⇒ Rn <

3

(n + 1)!
.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Integration V Approximation by Polynomial Functions 79/79

e is irrational

Theorem (e is irrational)

@ k ,m ∈ N such that e = k/m.

Proof.

Suppose e = k/m with k,m ∈ N. Then, for any n ∈ N, we have

k

m
= e1 = 1 + 1 +

1

2!
+ · · ·+ 1

n!
+ Rn , 0 < Rn <

3

(n + 1)!
.

∴
n!k

m
= n! + n! +

n!

2!
+ · · ·+ n!

n!
+ n!Rn , n ∈ N.

This is true, in particular, for n > 3 and n > m, in which case every term
in this equation other than n!Rn is an integer. So n!Rn is also an integer!
But 0 < Rn < 3/(n + 1)!, so since n > 3 we have

0 < n!Rn <
3

n + 1
<

3

4
< 1,

which is impossible for an integer.

Instructor: David Earn Mathematics 3A03 Real Analysis I


