26 Integration

27 Integration II

28 Integration III

2 29 Integration IV

30 Integration V

McMaster University

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 26
Integration
Friday 15 March 2019

Announcements

- Assignment 5 is due on Monday 25 March 2019 @ 11:30am via crowdmark.

■ Test 2 is on Monday 1 April 2019, 7:00pm-8:30pm in MDCL 1110.

■ Assignment 6 will be due on Monday 8 April 2019 © 11:30am via crowdmark.

■ Final exam on Monday 15 April 2019 © 4:00pm in IWC/2.
■ NY Times article by Steven Stogatz in honour of Pi Day.

- Great example of mathematical science writing for the general public.

Last time. .

■ Proved Mean Value Theorem.
■ Proved Darboux's Theorem.
■ Sketched proof of Inverse Function Theorem.

Integration

Integration

■ "Area of region $R(f, a, b)$ " is actually a very subtle concept.
■ We will only scratch the surface of it.

- Textbook presentation of integral is different (but equivalent).

Our treatment is closer to that in M. Spivak "Calculus" (2008).

Integration

■ Contribution to "area of $R(f, a, b)$ " is positive or negative depending on whether f is positive or negative.

Lower sum

Upper sum

Lower and upper sums

Rigorous development of the integral

Definition (Partition)

Let $a<b$. A partition of the interval $[a, b]$ is a finite collection of points in $[a, b]$, one of which is a, and one of which is b.

We normally label the points in a partition

$$
a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b
$$

so the ith subinterval in the partition is

$$
\left[t_{i-1}, t_{i}\right]
$$

Rigorous development of the integral

Definition (Lower and upper sums)

Suppose f is bounded on $[a, b]$ and $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$. Let

$$
\begin{aligned}
m_{i} & =\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \\
M_{i} & =\sup \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}
\end{aligned}
$$

The lower sum of f for P, denoted by $L(f, P)$, is defined as

$$
L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) .
$$

The upper sum of f for P, denoted by $U(f, P)$, is defined as

$$
U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
$$

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- The lower and upper sums correspond to the total areas of rectangles lying below and above the graph of f in our motivating sketch.
- However, these sums have been defined precisely without any appeal to a concept of "area".
- The requirement that f be bounded on $[a, b]$ is essential in order that all the m_{i} and M_{i} be well-defined.

■ It is also essential that the m_{i} and M_{i} be defined as inf's and sup's (rather than maxima and minima) because f was not assumed continuous.

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- Since $m_{i} \leq M_{i}$ for each i, we have

$$
m_{i}\left(t_{i}-t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right) . \quad i=1, \ldots, n
$$

\therefore For any partition P of $[a, b]$ we have

$$
L(f, P) \leq U(f, P)
$$

because

$$
\begin{aligned}
& L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) \\
& U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
\end{aligned}
$$

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

■ More generally, if P_{1} and P_{2} are any two partitions of $[a, b]$, it ought to be true that

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

because $L\left(f, P_{1}\right)$ should be \leq area of $R(f, a, b)$, and $U\left(f, P_{2}\right)$ should be \geq area of $R(f, a, b)$.

■ But "ought to" and "should be" prove nothing, especially since we haven't yet even defined "area of $R(f, a, b)$ ".

- Before we can define "area of $R(f, a, b)$ ", we need to prove that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$ for any partitions $P_{1}, P_{2} \ldots$

Rigorous development of the integral

Lemma

If partition $P \subseteq$ partition Q (i.e., if every point of P is also in Q), then $L(f, P) \leq L(f, Q) \quad$ and $\quad U(f, P) \geq U(f, Q)$.

Rigorous development of the integral

Proof of Lemma

As a first step, consider the special case in which the finer partition Q contains only one more point than P :

$$
\begin{aligned}
& P=\left\{t_{0}, \ldots, t_{n}\right\}, \\
& Q=\left\{t_{0}, \ldots, t_{k-1}, u, t_{k}, \ldots, t_{n}\right\},
\end{aligned}
$$

where

$$
a=t_{0}<t_{1}<\cdots<t_{k-1}<u<t_{k}<\cdots<t_{n}=b .
$$

Let

$$
\begin{aligned}
m^{\prime} & =\inf \left\{f(x): x \in\left[t_{k-1}, u\right]\right\}, \\
m^{\prime \prime} & =\inf \left\{f(x): x \in\left[u, t_{k}\right]\right\} .
\end{aligned}
$$

... continued. . .

Rigorous development of the integral

Proof of Lemma (cont.)

$$
\begin{aligned}
& \text { Then } \begin{aligned}
& L(f, P)= \sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) \\
& \text { and } \quad \begin{aligned}
L(f, Q)= & \sum_{i=1}^{k-1} m_{i}\left(t_{i}-t_{i-1}\right)+m^{\prime}\left(u-t_{k-1}\right) \\
& +m^{\prime \prime}\left(t_{k}-u\right)+\sum_{i=k+1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) .
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned}
\end{aligned}
$$

\therefore To prove $L(f, P) \leq L(f, Q)$, it is enough to show

$$
m_{k}\left(t_{k}-t_{k-1}\right) \leq m^{\prime}\left(u-t_{k-1}\right)+m^{\prime \prime}\left(t_{k}-u\right) .
$$

Rigorous development of the integral

Proof of Lemma (cont.)

Now note that since

$$
\left\{f(x): x \in\left[t_{k-1}, u\right]\right\} \quad \subseteq \quad\left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\}
$$

the RHS might contain some additional smaller numbers, so we must have

$$
\begin{aligned}
m_{k} & =\inf \left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\} \\
& \leq \inf \left\{f(x): x \in\left[t_{k-1}, u\right]\right\}=m^{\prime}
\end{aligned}
$$

Thus, $m_{k} \leq m^{\prime}$, and, similarly, $m_{k} \leq m^{\prime \prime}$.

$$
\begin{aligned}
\therefore \quad m_{k}\left(t_{k}-t_{k-1}\right) & =m_{k}\left(t_{k}-u+u-t_{k-1}\right) \\
& =m_{k}\left(u-t_{k-1}\right)+m_{k}\left(t_{k}-u\right) \\
& \leq m^{\prime}\left(u-t_{k-1}\right)+m^{\prime \prime}\left(t_{k}-u\right),
\end{aligned}
$$

Rigorous development of the integral

Proof of Lemma (cont.)

which proves (in this special case where Q contains only one more point than P) that $L(f, P) \leq L(f, Q)$.

We can now prove the general case by adding one point at a time.
If Q contains ℓ more points than P, define a sequence of partitions

$$
P=P_{0} \subset P_{1} \subset \cdots \subset P_{\ell}=Q
$$

such that P_{j+1} contains exactly one more point that P_{j}. Then

$$
L(f, P)=L\left(f, P_{0}\right) \leq L\left(f, P_{1}\right) \leq \cdots \leq L\left(f, P_{\ell}\right)=L(f, Q)
$$

so $L(f, P) \leq L(f, Q)$.
(Proving $U(f, P) \geq U(f, Q)$ is similar: check!)

Rigorous development of the integral

Theorem (Partition Theorem)

Let P_{1} and P_{2} be any two partitions of $[a, b]$. If f is bounded on [a, b] then

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

Proof.

This is a straightforward consequence of the partition lemma.
Let $P=P_{1} \cup P_{2}$, i.e., the partition obtained by combining all the points of P_{1} and P_{2}.

Then

$$
L\left(f, P_{1}\right) \leq L(f, P) \leq U(f, P) \leq U\left(f, P_{2}\right)
$$

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 27
Integration II
Monday 18 March 2019

Announcements

- Part of Assignment 5 is posted on the course web site (more to come). It is due on Monday 25 March 2019 @ 11:30am via crowdmark.

■ Test 2 is on Monday 1 April 2019, 7:00pm-8:30pm in MDCL 1110.

- Assignment 6 will be due on Monday 8 April 2019 © 11:30am via crowdmark.

■ Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Rigorous development of the integral

Important inferences that follow from the partition theorem:

- For any partition P^{\prime}, the upper sum $U\left(f, P^{\prime}\right)$ is an upper bound for the set of all lower sums $L(f, P)$.
$\therefore \quad \sup \{L(f, P): P$ a partition of $[a, b]\} \leq U\left(f, P^{\prime}\right) \quad \forall P^{\prime}$
$\therefore \quad \sup \{L(f, P)\} \leq \inf \{U(f, P)\}$
$\therefore \quad$ For any partition P^{\prime},

$$
L\left(f, P^{\prime}\right) \leq \sup \{L(f, P)\} \leq \inf \{U(f, P)\} \leq U\left(f, P^{\prime}\right)
$$

- If $\sup \{L(f, P)\}=\inf \{U(f, P)\}$ then we can define "area of $R(f, a, b)$ " to be this number.
- Is it possible that $\sup \{L(f, P)\}<\inf \{U(f, P)\}$?

Rigorous development of the integral

Example

$\exists ? f:[a, b] \rightarrow \mathbb{R}$ such that $\sup \{L(f, P)\}<\inf \{U(f, P)\}$
Let

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \cap[a, b] \\ 0 & x \in \mathbb{Q}^{c} \cap[a, b] .\end{cases}
$$

If $P=\left\{t_{0}, \ldots, t_{n}\right\}$ then $m_{i}=0 \quad\left(\because \quad\left[t_{i-1}, t_{i}\right] \cap \mathbb{Q}^{c} \neq \varnothing\right)$,

$$
\text { and } M_{i}=1 \quad\left(\because \quad\left[t_{i-1}, t_{i}\right] \cap \mathbb{Q} \neq \varnothing\right)
$$

$\therefore \quad L(f, P)=0 \quad$ and $\quad U(f, P)=b-a \quad$ for any partition P.
$\therefore \sup \{L(f, P)\}=0<b-a=\inf \{U(f, P)\}$.
Can we define "area of $R(f, a, b)$ " for such a weird function? Yes, but not in this course!

Rigorous development of the integral

Definition (Integrable)

A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be integrable on $[a, b]$ if it is bounded on $[a, b]$ and

$$
\begin{aligned}
\sup & \{L(f, P): P \text { a partition of }[a, b]\} \\
& =\inf \{U(f, P): P \text { a partition of }[a, b]\} .
\end{aligned}
$$

In this case, this common number is called the integral of f on [a, b] and is denoted

$$
\int_{a}^{b} f
$$

Note: If f is integrable then for any partition P we have

$$
L(f, P) \leq \int_{a}^{b} f \leq U(f, P)
$$

and $\int_{a}^{b} f$ is the unique number with this property.

Rigorous development of the integral

- Notation:

$$
\int_{a}^{b} f(x) d x \quad \text { means precisely the same as } \quad \int_{a}^{b} f
$$

■ The symbol " $d x$ " has no meaning in isolation just as " $x \rightarrow$ " has no meaning except in $\lim _{x \rightarrow a} f(x)$.

■ It is not clear from the definition which functions are integrable.

- The definition of the integral does not itself indicate how to compute the integral of any given integrable function. So far, without a lot more effort we can't say much more than these two things:

1 If $f(x) \equiv c$ then f is integrable on $[a, b]$ and $\int_{a}^{b} f=c \cdot(b-a)$.
2 The weird example function is not integrable.

Rigorous development of the integral

- A function that is integrable according to our definition is usually said to be Riemann integrable, to distinguish this definition from other definitions of integrability.

■ In Math 4A03 you will define "Lebesgue integrable", a more subtle concept that makes it possible to attach meaning to "area of $R(f, a, b)$ " for the weird example function (among others), and to precisely characterize functions that are Riemann integrable.

Rigorous development of the integral

Theorem (Equivalent condition for integrability)

A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$ iff for all $\varepsilon>0$ there is a partition P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\varepsilon .
$$

Proof.

2016 Assignment 5.

Note: This theorem is just a restatement of the definition of integrability. It is often more convenient to work with $\varepsilon>0$ than with sup's and inf's.

Integral theorems

Theorem

If f is continuous on $[a, b]$ then f is integrable on $[a, b]$.
Rough work to prepare for proof:

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

Given $\varepsilon>0$, choose a partition P that is so fine that $M_{i}-m_{i}<\varepsilon$ for all i. Then

$$
U(f, P)-L(f, P)<\varepsilon \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\varepsilon(b-a)
$$

Not quite what we want. So choose the partition P such that $M_{i}-m_{i}<\varepsilon /(b-a)$ for all i. To get that, choose P such that

$$
|f(x)-f(y)|<\frac{\varepsilon}{2(b-a)} \quad \text { if }|x-y|<\max _{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)
$$

which we can do because f is uniformly continuous on $[a, b]$.

Integral theorems

Proof that continuous \Longrightarrow integrable

Since f is continuous on the compact set $[a, b]$, it is bounded on $[a, b]$ (which is the first requirement to be integrable on $[a, b]$).

Also, since f is continuous on the compact set $[a, b]$, it is uniformly continuous on $[a, b] . \quad \therefore \forall \varepsilon>0 \exists \delta>0$ such that $\forall x, y \in[a, b]$,

$$
|x-y|<\delta \quad \Longrightarrow \quad|f(x)-f(y)|<\frac{\varepsilon}{2(b-a)}
$$

Now choose a partition of $[a, b]$ such that the length of each subinterval $\left[t_{i-1}, t_{i}\right]$ is less than δ, i.e., $t_{i}-t_{i-1}<\delta$. Then, for any $x, y \in\left[t_{i-1}, t_{i}\right]$ we have $|x-y|<\delta$ and therefore
. . . continued. . .

Integral theorems

Proof that continuous \Longrightarrow integrable (cont.)

$$
\begin{aligned}
& |f(x)-f(y)|<\frac{\varepsilon}{2(b-a)} \quad \forall x, y \in\left[t_{i-1}, t_{i}\right] . \\
\therefore \quad & M_{i}-m_{i} \leq \frac{\varepsilon}{2(b-a)}<\frac{\varepsilon}{b-a} \quad i=1, \ldots, n .
\end{aligned}
$$

Since this is true for all i, it follows that

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right) \\
& <\frac{\varepsilon}{b-a} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\frac{\varepsilon}{b-a}(b-a)=\varepsilon
\end{aligned}
$$

Properties of the integral

Theorem (Integral segmentation)

Let $a<c<b$. If f is integrable on $[a, b]$, then f is integrable on $[a, c]$ and on $[c, b]$. Conversely, if f is integrable on $[a, c]$ and $[c, b]$ then f is integrable on $[a, b]$. Finally, if f is integrable on $[a, b]$ then

$$
\begin{equation*}
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f \tag{৫}
\end{equation*}
$$

(a good exercise)
This theorem motivates these definitions:

$$
\int_{a}^{a} f=0 \quad \text { and } \quad \int_{a}^{b} f=-\int_{b}^{a} f \quad \text { if } a>b
$$

Then ((\checkmark) holds for any $a, b, c \in \mathbb{R}$.

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 28
Integration III
Wednesday 20 March 2019

Announcements

- Assignment 5 is due on Monday 25 March 2019 @ 11:30am via crowdmark.

■ Test 2 is on Monday 1 April 2019, 7:00pm-8:30pm in MDCL 1110.

- Assignment 6 will be due on Monday 8 April 2019 @ 11:30am via crowdmark.

■ Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Last time. .

Rigorous development of integral:
■ Definition: integrable.
■ Example: non-integrable function.
■ Theorem: Equivalent " ε - P " definition of integrable.
■ Theorem: continuous \Longrightarrow integrable.
■ Theorem: Integral segmentation.

Properties of the integral

Theorem (Algebra of integrals - a.k.a. \int_{a}^{b} is a linear operator)
If f and g are integrable on $[a, b]$ and $c \in \mathbb{R}$ then $f+g$ and $c f$ are integrable on $[a, b]$ and
$1 \int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$;
$2 \int_{a}^{b} c f=c \int_{a}^{b} f$.
(proofs are relatively easy; good exercises)
Theorem (Integral of a product)
If f and g are integrable on $[a, b]$ then $f g$ is integrable on $[a, b]$. (proof is much harder; tough exercise)

Properties of the integral

Lemma (Integral bounds)

Suppose f is integrable on $[a, b]$. If $m \leq f(x) \leq M$ for all $x \in[a, b]$ then

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

Proof.

For any partition P, we must have $m \leq m_{i} \forall i$ and $M \geq M_{i} \forall i$.

$$
\begin{gathered}
\therefore \quad m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a) \quad \forall P \\
\therefore \quad m(b-a) \leq \sup \{L(f, P)\}=\int_{a}^{b} f=\inf \{U(f, P)\} \leq M(b-a)
\end{gathered}
$$

Properties of the integral

Theorem (Integrals are continuous)

If f is integrable on $[a, b]$ and F is defined on $[a, b]$ by

$$
F(x)=\int_{a}^{x} f
$$

then F is continuous on $[a, b]$.

Proof

Let's first consider $x_{0} \in[a, b)$ and show F is continuous from above at x_{0}, i.e., $\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$. If $x \in\left(x_{0}, b\right]$ then

$$
\begin{equation*}
(\bigcirc) \quad \Longrightarrow \quad F(x)-F\left(x_{0}\right)=\int_{a}^{x} f-\int_{a}^{x_{0}} f=\int_{x_{0}}^{x} f . \tag{*}
\end{equation*}
$$

. . . continued. . .

Properties of the integral

Proof (cont.)

Since f is integrable on $[a, b]$, it is bounded on $[a, b]$, so $\exists M>0$ such that

$$
-M \leq f(x) \leq M \quad \forall x \in[a, b]
$$

from which the integral bounds lemma implies

$$
-M\left(x-x_{0}\right) \leq \int_{x_{0}}^{x} f \leq M\left(x-x_{0}\right)
$$

$\therefore \quad(*) \Longrightarrow-M\left(x-x_{0}\right) \leq F(x)-F\left(x_{0}\right) \leq M\left(x-x_{0}\right)$.
\therefore For any $\varepsilon>0$ we can ensure $\left|F(x)-F\left(x_{0}\right)\right|<\varepsilon$ by requiring $0 \leq x-x_{0}<\varepsilon / M$, which proves $\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$.
A similar argument starting from $x_{0} \in(a, b]$ and $x \in\left[a, x_{0}\right)$ yields $\lim _{x \rightarrow x_{0}^{-}} F(x)=F\left(x_{0}\right)$. Thus, "integrals are continuous".

Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus)

Let f be integrable on $[a, b]$, and define F on $[a, b]$ by

$$
F(x)=\int_{a}^{x} f
$$

If f is continuous at $c \in[a, b]$, then F is differentiable at c, and

$$
F^{\prime}(c)=f(c)
$$

Note: If $c=a$ or b, then $F^{\prime}(c)$ is understood to mean the rightor left-hand derivative of F.

Fundamental Theorem of Calculus

$$
\begin{aligned}
& F(c+h)-F(c) \simeq f(c+h) \cdot h \\
& \text { and } \quad \lim f(c+h)=f(c)
\end{aligned} \Longrightarrow \quad \lim _{h \rightarrow 0} \frac{F(c+h)-F(c)}{h}=f(c)
$$

$$
\text { and } \quad \lim _{h \rightarrow 0} f(c+h)=f(c)
$$

Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus

Suppose $c \in[a, b)$, and $0<h \leq b-c$. Then the integral segmentation theorem implies

$$
F(c+h)-F(c)=\int_{c}^{c+h} f
$$

Motivated by the sketch, define

$$
\begin{aligned}
& m_{h}=\inf \{f(x): x \in[c, c+h]\} \\
& M_{h}=\sup \{f(x): x \in[c, c+h]\}
\end{aligned}
$$

Then the integral bounds lemma implies

$$
m_{h} \cdot h \leq \int_{c}^{c+h} f \leq M_{h} \cdot h
$$

... continued. . .

Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus (cont.)

 and hence$$
m_{h} \leq \frac{F(c+h)-F(c)}{h} \leq M_{h}
$$

This inequality is true for any integrable function. However, because f is continuous at c, we have

$$
\lim _{h \rightarrow 0^{+}} m_{h}=\lim _{h \rightarrow 0^{+}} M_{h}=f(c)
$$

so the squeeze theorem implies

$$
F_{+}^{\prime}(c)=\lim _{h \rightarrow 0^{+}} \frac{F(c+h)-F(c)}{h}=f(c)
$$

A similar argument for $c \in(a, b]$ and $c-a \leq h<0$ yields $F_{-}^{\prime}(c)=f(c)$.

Fundamental Theorem of Calculus

Corollary

If f is continuous on $[a, b]$ and $f=g^{\prime}$ for some function g, then

$$
\int_{a}^{b} f=g(b)-g(a) .
$$

Proof.

Let $F(x)=\int_{a}^{x} f$. Then throughout $[a, b]$ we have $F^{\prime}=f=g^{\prime}$.
$\therefore \exists c \in \mathbb{R}$ such that $F=g+c$ (2016 Assignment 5).
$\therefore F(a)=g(a)+c$.
But $F(a)=\int_{a}^{a} f=0$, so $c=-g(a)$.
$\therefore F(x)=g(x)-g(a)$.
This is true, in particular, for $x=b$, so $\int_{a}^{b} f=g(b)-g(a)$.

Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)

If f is integrable on $[a, b]$ and $f=g^{\prime}$ for some function g, then

$$
\int_{a}^{b} f=g(b)-g(a) .
$$

Notes:

- This looks like the corollary to the first fundamental theorem, except that f is only assumed integrable, not continuous.
- Recall from Darboux's theorem that if $f=g^{\prime}$ for some g then f has the intermediate value property, but f need not be continuous.
- The proof of the second fundamental theorem is completely different from the corollary to the first, because we cannot use the first fundamental theorem (which assumed f is continuous).

Fundamental Theorem of Calculus

Proof of Second Fundamental Theorem of Calculus

Let $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be any partition of $[a, b]$. By the Mean Value Theorem, for each $i=1, \ldots, n, \exists x_{i} \in\left[t_{i-1}, t_{i}\right]$ such that

$$
g\left(t_{i}\right)-g\left(t_{i-1}\right)=g^{\prime}\left(x_{i}\right)\left(t_{i}-t_{i-1}\right)=f\left(x_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

Define m_{i} and M_{i} as usual. Then $m_{i} \leq f\left(x_{i}\right) \leq M_{i} \forall i$, so

$$
\begin{aligned}
& m_{i}\left(t_{i}-t_{i-1}\right) \leq f\left(x_{i}\right)\left(t_{i}-t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right), \\
& \text { i.e., } \quad m_{i}\left(t_{i}-t_{i-1}\right) \leq g\left(t_{i}\right)-g\left(t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right) \text {. } \\
& \therefore \quad \sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) \leq \sum_{i=1}^{n}\left(g\left(t_{i}\right)-g\left(t_{i-1}\right)\right) \leq \sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right) \\
& \text { i.e., } \\
& L(f, P) \leq \quad g(b)-g(a) \leq U(f, P)
\end{aligned}
$$

for any partition $P . \quad \therefore \quad g(b)-g(a)=\int_{a}^{b} f$.

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 29
Integration IV
Friday 22 March 2019

Please consider. . .

5 minute Student Respiratory IIIness Survey:
https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.
-Dr. Marek Smieja (Infectious Diseases)

Announcements

- Assignment 5 is due on Monday 25 March 2019 @ 11:30am via crowdmark.

■ Test 2 is on Monday 1 April 2019, 7:00pm-8:30pm in MDCL 1110.

- Assignment 6 will be due on Monday 8 April 2019 @ 11:30am via crowdmark.

■ Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Last time. .

Rigorous development of integral:

- Algebra of integrals.

■ Integral bounds lemma.
■ Integrals are continuous.
■ First Fundamental Theorem of Calculus.
■ Second Fundamental Theorem of Calculus.

What useful things can we do with integrals?

- Compute areas of complicated shapes: find anti-derivatives and use the second fundamental theorem of calculus.
- Define trigonometric functions (rigorously).

■ Define logarithm and exponential functions (rigorously).

What is π ?

Definition

$$
\pi \equiv 2 \int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

What are cos and sin ?

Fridays

What are cos and sin ?

Length of circular arc swept out by angle θ :
Area of sectoral region swept out by angle θ : $\quad \theta / 2$
So, if $\theta \in[0, \pi]$ then we define $\cos \theta$ to be the unique number in $[-1,1]$ such that $\mathcal{A}(\cos \theta)=\theta / 2$, and we define $\sin \theta$ to be $\sqrt{1-(\cos \theta)^{2}}$.
We must prove: given $x \in[0, \pi] \exists!y \in[-1,1]$ such that $\mathcal{A}(y)=x / 2$.

What are cos and sin ?

Proof that $\forall x \in[0, \pi] \exists!y \in[-1,1]$ such that $\mathcal{A}(y)=x / 2$:
Existence: $\mathcal{A}(1)=0, \mathcal{A}(-1)=\pi / 2$, and \mathcal{A} is continuous. Hence by the intermediate value theorem $\exists y \in[-1,1]$ such that $\mathcal{A}(y)=x / 2$.

Uniqueness: \mathcal{A} is differentiable on $(-1,1)$ and $\mathcal{A}^{\prime}(x)<0$ on $(-1,1)$.
\therefore On $(-1,1), \mathcal{A}$ is decreasing, and hence one-to-one.

Definition (cos and \sin)

If $x \in[0, \pi]$ then $\cos x$ is the unique number in $[-1,1]$ such that $\mathcal{A}(\cos x)=x / 2$, and $\sin x=\sqrt{1-(\cos x)^{2}}$.

These definitions are easily extended to all of \mathbb{R} :

- For $x \in[\pi, 2 \pi]$, define $\cos x=\cos (2 \pi-x)$ and $\sin x=-\sin (2 \pi-x)$.
- Then, for $x \in \mathbb{R} \backslash[0,2 \pi]$ define $\cos x=\cos (x \bmod 2 \pi)$ and $\sin x=\sin (x \bmod 2 \pi)$.

Trigonometric theorems

Given the rigorous definition of \cos and sin, we can prove:
$1 \cos$ and sin are differentiable on \mathbb{R}. Moreover, $\cos ^{\prime}=-\sin$ and $\sin ^{\prime}=\cos$.
$2 \mathrm{sec}, \tan , \csc$ and cot can all be defined in the usual way and have all the usual properties.
3 The inverse function theorem allows us to define and compute the derivatives of all the inverse trigonometric functions.
4 If f is twice differentiable on $\mathbb{R}, \quad f^{\prime \prime}+f=0, \quad f(0)=a$ and $f^{\prime}(0)=b$, then $f=a \cos +b \sin$.
5 For all $x, y \in \mathbb{R}$,

$$
\begin{aligned}
\sin (x+y) & =\sin x \cos y+\cos x \sin y, \\
\cos (x+y) & =\cos x \cos y-\sin x \sin y .
\end{aligned}
$$

Something deep that you know enough to prove

Extra Challenge Problem: Prove that π is irrational.

What are \log and \exp ?

Consider the function

$$
f(x)=10^{x}
$$

What exactly is this function?

In our mathematically naïve previous life, we just assumed that $f(x)$ is well-defined $\forall x \in \mathbb{R}$, and that f has a well-defined inverse function,

$$
f^{-1}(x)=\log _{10}(x)
$$

But how are 10^{x} and $\log _{10}(x)$ defined for irrational x ?

Let's review what we know...

What are \log and exp ?

$$
\begin{aligned}
n \in \mathbb{N} & \Longrightarrow 10^{n}=\underbrace{10 \cdots 10}_{n \text { times }} \\
n, m \in \mathbb{N} & \Longrightarrow 10^{n} \cdot 10^{m}=10^{n+m}
\end{aligned}
$$

When we extend 10^{x} to $x \in \mathbb{Q}$, we want this product rule to be preserved:

$$
\begin{gathered}
10^{0} \cdot 10^{n}=10^{0+n}=10^{n} \quad \Longrightarrow 10^{0}=1 \\
10^{-n} \cdot 10^{n}=10^{0}=1 \quad \Longrightarrow \quad 10^{-n}=\frac{1}{10^{n}} \\
\underbrace{10^{1 / n} \cdots 10^{1 / n}}_{n \text { times }}=1 \underbrace{1 / n \cdots 1 / n}_{n \text { times }}=10^{1}=10 \quad \Longrightarrow \quad 10^{1 / n}=\sqrt[n]{10}
\end{gathered}
$$

What are \log and \exp ?

Finally,

$$
\underbrace{10^{1 / n} \cdots 10^{1 / n}}_{m \text { times }}=10 \underbrace{1 / n \cdots 1 / n}_{m \text { times }}=10^{m / n} \quad \Longrightarrow \quad 10^{m / n}=(\sqrt[n]{10})^{m}
$$

Now we're stuck. How do we extend this scheme to irrational x?
We need a more sophisticated idea.
Let's try to find a function on all of \mathbb{R} that satisfies

$$
\begin{aligned}
f(x+y) & =f(x) \cdot f(y), \quad \forall x, y \in \mathbb{R} \\
\text { and } \quad f(1) & =10
\end{aligned}
$$

It then follows that $\quad f(0)=1 \quad$ and, $\forall x \in \mathbb{Q}, \quad f(x)=[f(1)]^{x}$.
What additional properties can we impose on $f(x)$ that will lead us to a sensible definition of $f(x)$ for all $x \in \mathbb{R}$?

What are \log and \exp ?

One approach is to insist that f is differentiable.
Then we can compute

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x) \cdot f(h)-f(x)}{h} \\
& =f(x) \cdot \lim _{h \rightarrow 0} \frac{f(h)-1}{h}=f(x) \cdot f^{\prime}(0) \equiv \alpha f(x)
\end{aligned}
$$

So $f^{\prime}(x)=\alpha f(x)$, i.e., we have f^{\prime} in terms of unknowns f and α. So what?!?

Let's look at the inverse function, f^{-1} (think " $\log _{10}$ "):

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{\alpha f\left(f^{-1}(x)\right)}=\frac{1}{\alpha x}
$$

Holy \$\#@\%! We have a simple formula for the derivative of f^{-1} !

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 30
Integration V
Monday 25 March 2019

Please consider...

5 minute Student Respiratory IIIness Survey:
https://surveys.mcmaster.ca/limesurvey2/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.
-Dr. Marek Smieja (Infectious Diseases)

Announcements

- Assignment 5 was due today.

■ Test 2 is on Monday 1 April 2019, 7:00pm-8:30pm in MDCL 1110.

■ Assignment 6 will be due on Monday 8 April 2019 © 11:30am via crowdmark.

■ Two problems have been posted so far. Definitely do these two problems before the test.

■ Final exam on Monday 15 April 2019 @ 4:00pm in IWC/2.

Last time. . .

- Rigorous definition of trig functions.
- Working towards rigorous definition of 10^{x} for $x \in \mathbb{R}$.
- Discovered a simple formula for the derivative of f^{-1} !

What are \log and exp ?

Since we want $\log _{10} 1=0$, we should define $\log _{10} x$ as $(1 / \alpha) \int_{1}^{x} t^{-1} d t$. Great idea, but we don't know what α is.

So, let's ignore $\alpha \ldots$
(and hope that what we end up with is log to some "natural" base).

Definition (Logarithm function)

If $x>0$ then

$$
\log x=\int_{1}^{x} \frac{1}{t} d t
$$

This function is strictly increasing $\left(\log ^{\prime}(x)>0\right.$ for all $\left.x>0\right)$ so we can now define:
Definition (Exponential function)

$$
\exp =\log ^{-1}
$$

What are \log and exp ?

With these rigorous defintions of log and exp, we can prove the following as theorems:

1 If $x, y>0$ then $\log (x y)=\log x+\log y$.
2 If $x, y>0$ then $\log (x / y)=\log x-\log y$.
3 If $n \in \mathbb{N}$ and $x>0$ then $\log \left(x^{n}\right)=n \log x$.
4 For all $x \in \mathbb{R}, \exp ^{\prime}(x)=\exp (x)$.
5 For all $x, y \in \mathbb{R}, \exp (x+y)=\exp (x) \cdot \exp (y)$.
6 For all $x \in \mathbb{Q}, \exp (x)=[\exp (1)]^{x}$.
The last theorem above motivates:

Definition

$$
\begin{aligned}
e & =\exp (1) \\
e^{x} & =\exp (x) \quad \text { for all } x \in \mathbb{R}
\end{aligned}
$$

What are \log and exp ?

We can now give a rigorous definition of 10^{x} for any $x \in \mathbb{R}$. In fact, we can do this for any $a>0$.

Definition (a^{x})

If $a>0$ and x is any real number then

$$
a^{x}=e^{x \log a} .
$$

We then have the following theorems for any $a>0$:
$1\left(a^{x}\right)^{y}=a^{x y}$ for all $x, y \in \mathbb{R}$;
$2 a^{0}=1 ; \quad a^{1}=a$;
$3 a^{x+y}=a^{x} \cdot a^{y}$ for all $x, y \in \mathbb{R}$;
$4 a^{-x}=1 / a^{x}$ for all $x \in \mathbb{R}$;
5 if $a>1$ then a^{x} is increasing on \mathbb{R};
[6 if $0<a<1$ then a^{x} is decreasing on \mathbb{R}.

Using the integral to define useful functions rigorously

- Just as we defined 10^{x} via the definition of $\log x=\int_{1}^{x} \frac{1}{t} d t$, we could have defined the trigonometric functions starting from

$$
\arcsin x=\int_{0}^{x} \frac{1}{\sqrt{1-t^{2}}} d t, \quad-1<x<1
$$

rather than the more complicated definition of cos via $\mathcal{A}(x)$. Many common functions are defined as integrals of rational functions of square roots.

- Any compositions of trig functions, log, exp, rational functions and radicals, are called elementary functions.
- Most functions that turn up a lot in applications can be defined rigorously via integrals of elementary functions. Such functions are collectively called special functions.

Approximation by Polynomial Functions

Definition (Taylor polynomial)

If f is n times differentiable at a then the Taylor polynomial of degree n for f at a is

$$
P_{n, a}(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Theorem (Taylor's theorem)

Suppose $f^{\prime}, \ldots, f^{(n+1)}$ are defined on $[a, x]$, and that $R_{n, a}(x)$ is defined by $f(x)=P_{n, a}(x)+R_{n, a}(x)$. Then

$$
R_{n, a}(x)=\frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}, \quad \text { for some } t \in(a, x)
$$

Note: The form of the remainder term here is known as the Lagrange form of the remainder.

Approximation by Polynomial Functions

Example (Approximating e)

Use Taylor's theorem to show that e can be approximated to within $\frac{3}{(n+1)!}$ for any given n. Also show that $2<e<3$.

Recall $e=e^{1}=\exp (1) . \quad \therefore e=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+R_{n}$, where $R_{n}=\frac{e^{t}}{(n+1)!}$ for some $t \in(0,1)$. Since e^{x} is increasing on $(0,1)$, we must have $e^{t}<e$, so $\frac{1}{(n+1)!}<R_{n}<\frac{e}{(n+1)!}$. But we can't estimate e using e.

Recall $1=\log e=\int_{1}^{e} \frac{1}{t} d t$, and note $\log 4=\int_{1}^{4} \frac{1}{t} d t>1$, since $\frac{1}{2}(2-1)+\frac{1}{4}(4-2)=1$ is a lower sum for $f(t)=1 / t$ on $[1,4]$.
$\therefore \log e<\log 4$, i.e., $e<4 . \quad$ (Similarly: Use $\int_{1}^{2} \frac{1}{t} d t$ to get $e>2$.)
$\therefore 2<e<4$ and $R_{n}<\frac{4}{(n+1)!}$.
Great, but what we actually want is

$$
2<e<3 \text { and } R_{n}<\frac{3}{(n+1)!} .
$$

... continued. . .

Approximation by Polynomial Functions

Example (Approximating e (cont.))
Given $R_{n}<\frac{4}{(n+1)!}$, note that for $n=4$ we have

$$
0<R_{n}<\frac{4}{5!}=\frac{1}{30}
$$

so applying Taylor's theorem with $n=4$ we get

$$
\begin{aligned}
e & =1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+R_{n}=\left(2+\frac{17}{24}\right)+R_{n} \\
& <\left(2+\frac{17}{24}\right)+\frac{1}{30}<3
\end{aligned}
$$

Thus $e<3$, and consequently

$$
R_{n}<\frac{e}{(n+1)!} \quad \Longrightarrow \quad R_{n}<\frac{3}{(n+1)!}
$$

e is irrational

Theorem (e is irrational)

$\nexists k, m \in \mathbb{N}$ such that $e=k / m$.

Proof.

Suppose $e=k / m$ with $k, m \in \mathbb{N}$. Then, for any $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\frac{k}{m} & =e^{1}=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+R_{n}, \quad 0<R_{n}<\frac{3}{(n+1)!} . \\
\therefore \quad \frac{n!k}{m} & =n!+n!+\frac{n!}{2!}+\cdots+\frac{n!}{n!}+n!R_{n}, \quad n \in \mathbb{N} .
\end{aligned}
$$

This is true, in particular, for $n>3$ and $n>m$, in which case every term in this equation other than $n!R_{n}$ is an integer. So $n!R_{n}$ is also an integer! But $0<R_{n}<3 /(n+1)$!, so since $n>3$ we have

$$
0<n!R_{n}<\frac{3}{n+1}<\frac{3}{4}<1,
$$

which is impossible for an integer.

