24 Differentiation

25 Differentiation II

Differentiation

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 24
Differentiation
Monday 11 March 2019

Announcements

- Assignment 5 will be posted soon.

The Derivative

The Derivative

Definition (Derivative)

Let f be defined on an interval I and let $x_{0} \in I$. The derivative of f at x_{0}, denoted by $f^{\prime}\left(x_{0}\right)$, is defined as

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

provided either that this limit exists or is infinite. If $f^{\prime}\left(x_{0}\right)$ is finite we say that f is differentiable at x_{0}. If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a differentiable function.

Note: "Differentiable" and "a derivative exists" always mean that the derivative is finite.

The Derivative

Example

$f(x)=x^{2}$. Find $f^{\prime}(2)$.

$$
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2}=\lim _{x \rightarrow 2} x+2=4
$$

Note:
■ In the first two limits, we must have $x \neq 2$.

- But in the third limit, we just plug in $x=2$.
- Two things are equal, but in one $x \neq 2$ and in the other $x=2$.
- Good illustration of why it is important to define the meaning of limits rigorously.

The Derivative

Example

Let f be defined in a neighbourhood I of 0 , and suppose $|f(x)| \leq x^{2}$ for all $x \in I$. Is f necessarily differentiable at 0 ? e.g.,

(solution on board)

The Derivative

Definition (One-sided derivatives)

Let f be defined on an interval I and let $x_{0} \in I$. The right-hand derivative of f at x_{0}, denoted by $f_{+}^{\prime}\left(x_{0}\right)$, is the limit

$$
f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

provided either that this one-sided limit exists or is infinite.
Similarly, the left-hand derivative of f at x_{0}, denoted by $f_{-}^{\prime}\left(x_{0}\right)$, is the limit

$$
f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Note:
If $x_{0} \in I^{\circ}$ then f is differentiable at x_{0} iff $f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right) \neq \pm \infty$.

The Derivative

Example

$$
f(x)= \begin{cases}x-1, & x<0 \\ 0, & x=0 \\ x+1, & x>0\end{cases}
$$

- Same slope from left and right. Why isn't f differentiable???
- $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0} f^{\prime}(x)=1$.
- $f_{-}^{\prime}(0)=f_{+}^{\prime}(0)=f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\infty$.

The Derivative

■ Higher derivatives: we write

- $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ if f^{\prime} is differentiable;
- $f^{(n+1)}=\left(f^{(n)}\right)^{\prime}$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$
\begin{aligned}
\frac{d f}{d x} & =f^{\prime}(x) \\
D & =\frac{d}{d x} \\
D^{n} f(x) & =\frac{d^{n} f}{d x}=f^{(n)}(x)
\end{aligned}
$$

The Derivative

Theorem (Differentiable \Longrightarrow continuous)

If f is defined in a neighbourhood I of x_{0} and f is differentiable at x_{0} then f is continuous at x_{0}.

Proof.

Must show $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$, i.e., $\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right)=0$.

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right) & =\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \times\left(x-x_{0}\right)\right) \\
& =\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right) \times \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \\
& =f^{\prime}\left(x_{0}\right) \times 0=0
\end{aligned}
$$

where we have used the theorem on the algebra of limits.

The Derivative

Theorem (Algebra of derivatives)

Supppose f and g are defined on an interval I and $x_{0} \in I$. If f and g are differentiable at x_{0} then $f+g$ and $f g$ are differentiable at x_{0}. If, in addition, $g\left(x_{0}\right) \neq 0$ then f / g is differentiable at x_{0}. Under these conditions:
$1(c f)^{\prime}\left(x_{0}\right)=c f^{\prime}\left(x_{0}\right)$ for all $c \in \mathbb{R}$;
$2(f+g)^{\prime}\left(x_{0}\right)=\left(f^{\prime}+g^{\prime}\right)\left(x_{0}\right)$;
$3(f g)^{\prime}\left(x_{0}\right)=\left(f^{\prime} g+f g^{\prime}\right)\left(x_{0}\right)$;
$4\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\left(\frac{g f^{\prime}-f g^{\prime}}{g^{2}}\right)\left(x_{0}\right) \quad\left(g\left(x_{0}\right) \neq 0\right)$.

[^0]
The Derivative

Theorem (Chain rule)

Suppose f is defined in a neighbourhood U of x_{0} and g is defined in a neighbourhood V of $f\left(x_{0}\right)$ such that $f(U) \subseteq V$. If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$ then the composite function $h=g \circ f$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right) .
$$

(Textbook (TBB) §7.3.2, p. 411)
TBB provide a very good motivating discussion of this proof, which is quite technical.

The Derivative

Theorem (Derivative at local extrema)

Let $f:(a, b) \rightarrow \mathbb{R}$. If x is a maximum or minimum point of f in (a, b), and f is differentiable at x, then $f^{\prime}(x)=0$.
(Textbook (TBB) Theorem 7.18, p. 424)
Note: f need not be differentiable or even continuous at other points.

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 25
Differentiation II
Wednesday 13 March 2019

Announcements

■ Part of Assignment 5 is posted on the course web site (more to come). It is due on Monday 25 March 2019 @ 11:30am via crowdmark.

■ Test 2 is on Monday 1 April 2019, 7:00pm-8:30pm in MDCL 1110.

■ Assignment 6 will be due on Monday 8 April 2019 © 11:30am via crowdmark.

■ Final exam on Monday 15 April 2019 © 4:00pm in IWC/2.

Last time. . .

- Definition of the derivative.

■ Proved differentiable \Longrightarrow continuous.
■ Discussed algebra of derivatives and chain rule.
■ Pictorial argument that derivative is zero at extrema.
■ Defined one-sided derivatives

- Example

The Mean Value Theorem

Theorem (Rolle's theorem)

If f is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then there exists $x \in(a, b)$ such that $f^{\prime}(x)=0$.

Proof.

f continuous on $[a, b] \Longrightarrow f$ has a max and min value on $[a, b]$. If either a max or min occurs at $x \in(a, b)$ then $f^{\prime}(x)=0$. If no max or min occurs in (a, b) then they must both occur at the endpoints, a and b. But $f(a)=f(b)$, so f is constant. Hence $f^{\prime}(x)=0 \forall x \in(a, b)$.

Theorem (Mean value theorem)

If f is continuous on $[a, b]$ and differentiable on (a, b) then there exists $x \in(a, b)$ such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

The Mean Value Theorem

Idea for proof:

Proof.

Apply Rolle's theorem to

$$
h(x)=f(x)-\left[f(a)+\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)\right]
$$

The Mean Value Theorem

Example

$f^{\prime}(x)>0$ on an interval $I \Longrightarrow f$ strictly increasing on I.
Proof:
Suppose $x_{1}, x_{2} \in I$ and $x_{1}<x_{2}$. We must show $f\left(x_{1}\right)<f\left(x_{2}\right)$.
Since $f^{\prime}(x)$ exists for all $x \in I, f$ is certainly differentiable on the closed subinterval $\left[x_{1}, x_{2}\right]$.

Hence by the Mean Value Theorem $\exists x_{*} \in\left(x_{1}, x_{2}\right)$ such that

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(x_{*}\right)
$$

But $x_{2}-x_{1}>0$ and since $x_{*} \in I$, we know $f^{\prime}\left(x_{*}\right)>0$.
$\therefore f\left(x_{2}\right)-f\left(x_{1}\right)>0, \quad$ i.e., $f\left(x_{1}\right)<f\left(x_{2}\right)$.

Intermediate value property for derivatives

Theorem (Darboux's Theorem: IVP for derivatives)

If f is differentiable on an interval I then its derivative f^{\prime} has the intermediate value property on I.

Notes:

- It is f^{\prime}, not f, that is claimed to have the intermediate value property in Darboux's theorem. This theorem does not follow from the standard intermediate value theorem because the derivative f^{\prime} is not necessarily continuous.
- Equivalent (contrapositive) statement of Darboux's theorem: If a function does not have the intermediate value property on I then it is impossible that it is the derivative of any function on I.
- Darboux's theorem implies that a derivative cannot have jump or removable discontinities. Any discontuity of a derivative must be essential. Recall example of a discontinuous function with IVP.

Intermediate value property for derivatives

Proof of Darboux's Theorem.

Consider $a, b \in I$ with $a<b$.
Suppose first that $f^{\prime}(a)<0<f^{\prime}(b)$. We will show $\exists x \in(a, b)$ such that $f^{\prime}(x)=0$. Since f^{\prime} exists on $[a, b]$, we must have f continuous on $[a, b]$, so the Extreme Value Theorem implies that f attains its minimum at some point $x \in[a, b]$. This minimum point cannot be an endpoint of $[a, b] \quad\left(x \neq a\right.$ because $f^{\prime}(a)<0$ and $x \neq b$ because $\left.f^{\prime}(b)>0\right)$.
Therefore, $x \in(a, b)$. But f is differentiable everywhere in (a, b), so, by the theorem on the derivative at local extrema, we must have $f^{\prime}(x)=0$.
Now suppose more generally that $f^{\prime}(a)<K<f^{\prime}(b)$. Let $g(x)=f(x)-K x$. Then g is differentiable on I and $g^{\prime}(x)=f^{\prime}(x)-K$ for all $x \in I$. In addition, $g^{\prime}(a)=f^{\prime}(a)-K<0$ and
$g^{\prime}(b)=f^{\prime}(b)-K>0$, so by the argument above, $\exists x \in(a, b)$ such that $g^{\prime}(x)=0$, i.e., $f^{\prime}(x)-K=0$, i.e., $f^{\prime}(x)=K$.
The case $f^{\prime}(a)>K>f^{\prime}(b)$ is similar.

Intermediate value property for derivatives

Example $\left(f^{\prime}(x) \neq 0 \forall x \in I \Longrightarrow f \nearrow\right.$ or \searrow on $\left.I\right)$
If f is differentiable on an interval I and $f^{\prime}(x) \neq 0$ for all $x \in I$ then f is either increasing or decreasing on the entire interval l.

Proof:
Suppose $\exists a, b \in I$ such that $f^{\prime}(a)<0$ and $f^{\prime}(b)>0$.
Then, from Darboux's theorem, $\exists c \in I$ such that $f^{\prime}(c)=0 . \Rightarrow \Leftarrow$
\therefore Either " $\exists a \in I$) $f^{\prime}(a)<0$ " is FALSE

$$
\text { or " } \exists b \in I \nmid f^{\prime}(b)>0 \text { " is FALSE. }
$$

\therefore Since we know $f^{\prime}(x) \neq 0 \forall x \in I$, it must be that either $f^{\prime}(x)>0 \forall x \in I$ or $f^{\prime}(x)<0 \forall x \in I$, i.e., either f is increasing on I or decreasing on I.

The Derivative of an Inverse

Example (Sufficient condition for non-differentiable inverse)

Suppose f is continuous and one-to-one on an interval I. If $x \in I$ and $f^{\prime}(x)=0$ then f^{-1} is not differentiable at $y=f(x)$.

Proof: By definition, the inverse function satisfies

$$
f\left(f^{-1}(y)\right)=y .
$$

Suppose that f is differentiable at y. Then, by the Chain Rule,

$$
f^{\prime}\left(f^{-1}(y)\right) \cdot\left(f^{-1}\right)^{\prime}(y)=1 .
$$

But $f^{-1}(y)=x$, and $f^{\prime}(x)=0$, so

$$
0 \cdot\left(f^{-1}\right)^{\prime}(y)=1,
$$

which is impossible! $\Rightarrow \Leftarrow$.

The Derivative of an Inverse

Theorem (Inverse function theorem)

If f is differentiable on an interval I and $f^{\prime}(x) \neq 0 \forall x \in I$, then
$1 f$ is one-to-one on I;
$2 f^{-1}$ is differentiable on $J=f(I)$;
$3\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad$ for all $x \in 1$,
i.e., $\quad\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(\left(f^{-1}(y)\right)\right.} \quad$ for all $y \in J$.
(Textbook (TBB) Theorem 7.32, p. 445)

The Derivative of an Inverse

Key insights for proof of inverse function theorem:
■ Darboux's theorem $\Longrightarrow f \nearrow$ or \searrow on $I \Longrightarrow f$ is $1: 1$ on I

- If $y=f(x)$ and $y_{0}=f\left(x_{0}\right)$ then $\quad x=f^{-1}(y)$ and $x_{0}=f^{-1}\left(y_{0}\right)$,

$$
\text { so } \quad \begin{aligned}
\frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}} & =\frac{x-x_{0}}{f(x)-f\left(x_{0}\right)} \\
& =\frac{1}{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}} .
\end{aligned}
$$

■ Since f continuous at x_{0}, we know $x \rightarrow x_{0} \Longrightarrow y \rightarrow y_{0}$.
■ But we need $y \rightarrow y_{0} \Longrightarrow x \rightarrow x_{0}$, i.e., f^{-1} continuous at y_{0}.

- In fact, f continuous and either \nearrow or \searrow on $I \Longrightarrow f^{-1}$ continuous on $J=f(I)$. (more generally, cf. Invariance of Domain thm)

[^0]: (Textbook (TBB) Theorem 7.7, p. 408)

