13 Topology of \mathbb{R} I

14 Topology of \mathbb{R} II

15 Topology of \mathbb{R} III

16 Topology of \mathbb{R} IV

17 Topology of $\mathbb{R} V$

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 13
Topology of \mathbb{R} I
Monday 4 February 2019

Announcements

- Assignment 3 was posted on Saturday.

Due Friday 15 Feb 2019 at 1:25pm. IMPORTANT CHANGE:

■ For the remainder of the term, assignments must be submitted electronically, not as a hardcopy.
■ You should have received a link for Assignment 3 via e-mail from crowdmark. If you have not received such an e-mail, please e-mail earn@math.mcmaster.ca.
■ If you write your solutions by hand, you will need to scan or photograph them to submit them via the online system.

- If you use $A T_{E X}$ to create a pdf file, you will need to separate your solutions for each question.
■ Marked assignments will be available online, rather than being returned in tutorial.

■ Today: "How big is \mathbb{R} ?" (see last few slides for Lecture 12) and intro to "Topology of \mathbb{R}^{\prime}

Topology of \mathbb{R}

Intervals

Open interval:

$$
(a, b)=\{x: a<x<b\}
$$

Closed interval:

$$
[c, d]=\{x: c \leq x \leq d\}
$$

Half-open interval:

$$
(e, f]=\{x: e<x \leq f\}
$$

Interior point

Definition (Interior point)

If $E \subseteq \mathbb{R}$ then x is an interior point of E if x lies in an open interval that is contained in E, i.e., $\exists c>0$ such that $(x-c, x+c) \subset E$.

Interior point examples

Set E	Interior points?
$(-1,1)$	Every point
$[0,1]$	Every point except the endpoints
\mathbb{N}	\nexists
\mathbb{R}	Every point
\mathbb{Q}	\nexists
$(-1,1) \cup[0,1]$	Every point except 1
$(-1,1) \backslash\left\{\frac{1}{2}\right\}$	Every point

Neighbourhood

Definition (Neighbourhood)

A neighbourhood of a point $x \in \mathbb{R}$ is an open interval containing x.

Deleted neighbourhood

Definition (Deleted neighbourhood)

A deleted neighbourhood of a point $x \in \mathbb{R}$ is a set formed by removing x from a neighbourhood of x.

$$
(a, b) \backslash\{x\}
$$

Isolated point

Definition (Isolated point)

If $x \in E \subseteq \mathbb{R}$ then x is an isolated point of E if there is a neighbourhood of x for which the only point in E is x itself, i.e., $\exists c>0$ such that $(x-c, x+c) \cap E=\{x\}$.

Isolated point examples

Set E	Isolated points?
$(-1,1)$	\nexists
$[0,1]$	\nexists
\mathbb{N}	Every point
\mathbb{R}	\nexists
\mathbb{Q}	\nexists
$(-1,1) \cup[0,1]$	\nexists
$(-1,1) \backslash\left\{\frac{1}{2}\right\}$	\nexists

Accumulation point

Definition (Accumulation Point or Limit Point)

If $E \subseteq \mathbb{R}$ then x is an accumulation point or limit point of E if every neighbourhood of x contains infinitely many points of E,

$$
\text { i.e., } \quad \forall c>0 \quad(x-c, x+c) \cap(E \backslash\{x\}) \neq \varnothing \text {. }
$$

Notes:

- It is possible but not necessary that $x \in E$.
- The shorthand condition is equivalent to saying that every deleted neighbourhood of x contains at least one point of E.

Accumulation point examples

Set E	Accumulation points?
$(-1,1)$	
$[0,1]$	
\mathbb{N}	
\mathbb{R}	
\mathbb{Q}	
$(-1,1) \cup[0,1]$	
$(-1,1) \backslash\left\{\frac{1}{2}\right\}$	
$\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$	

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 14
Topology of \mathbb{R} II
Friday 8 February 2019

Announcements

- Assignment 3 was posted on Saturday. Due Friday 15 Feb 2019 at 1:25pm via crowdmark
- Math 3A03 Test \#1 Monday 4 March 2019 at 7:00pm in MDCL 1110

Accumulation point examples

Set E	Accumulation points?
$(-1,1)$	$[-1,1]$
$[0,1]$	$[0,1]$
\mathbb{N}	\nexists
\mathbb{R}	\mathbb{R}
\mathbb{Q}	\mathbb{R}
$(-1,1) \cup[0,1]$	$[-1,1]$
$(-1,1) \backslash\left\{\frac{1}{2}\right\}$	$[-1,1]$
$\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$	$\{1\}$

Boundary point

Definition (Boundary Point)

If $E \subseteq \mathbb{R}$ then x is a boundary point of E if every neighbourhood of x contains at least one point of E and at least one point not in E, i.e.,

$$
\begin{aligned}
\forall c>0 & (x-c, x+c) \cap E \neq \varnothing \\
& \wedge(x-c, x+c) \cap(\mathbb{R} \backslash E) \neq \varnothing
\end{aligned}
$$

Note: It is possible but not necessary that $x \in E$.

Definition (Boundary)

If $E \subseteq \mathbb{R}$ then the boundary of E, denoted ∂E, is the set of all boundary points of E.

Boundary point examples

Set E	Boundary points?
$(-1,1)$	$\{-1,1\}$
$[0,1]$	$\{0,1\}$
\mathbb{N}	\mathbb{N}
\mathbb{R}	\nexists
\mathbb{Q}	\mathbb{R}
$(-1,1) \cup[0,1]$	$\{-1,1\}$
$(-1,1) \backslash\left\{\frac{1}{2}\right\}$	$\left\{-1, \frac{1}{2}, 1\right\}$
$\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$	$\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{1\}$

Closed set

Definition (Closed set)

A set $E \subseteq \mathbb{R}$ is closed if it contains all of its accumulation points.

Definition (Closure of a set)

If $E \subseteq \mathbb{R}$ and E^{\prime} is the set of accumulation points of E then $\bar{E}=E \cup E^{\prime}$ is the closure of E.

Note: If the set E has no accumulation points, then E is closed because there are no accumulation points to check.

Open set

Definition (Open set)
A set $E \subseteq \mathbb{R}$ is open if every point of E is an interior point.

Definition (Interior of a set)

If $E \subseteq \mathbb{R}$ then the interior of E, denoted $\operatorname{int}(E)$ or E°, is the set of all interior points of E.

Examples

Set E	Closed?	Open?	\bar{E}	E°	∂E
$(-1,1)$	NO	YES	$[-1,1]$	E	$\{-1,1\}$
$[0,1]$	YES	NO	E	$(0,1)$	$\{0,1\}$
\mathbb{N}	YES	NO	\mathbb{N}	\varnothing	\mathbb{N}
\mathbb{R}	YES	YES	\mathbb{R}	\mathbb{R}	\varnothing
\varnothing	YES	YES	\varnothing	\varnothing	\varnothing
\mathbb{Q}	NO	NO	\mathbb{R}	\varnothing	\mathbb{R}
$(-1,1) \cup[0,1]$	NO	NO	$[-1,1]$	$(-1,1)$	$\{-1,1\}$
$(-1,1) \backslash\left\{\frac{1}{2}\right\}$	NO	YES	$[-1,1]$	E	$\left\{-1, \frac{1}{2}, 1\right\}$
$\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$	NO	NO	$E \cup\{1\}$	\varnothing	$E \cup\{1\}$

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 15
Topology of \mathbb{R} III
Monday 11 February 2019

Announcements

- Assignment 3 is Due Friday 15 Feb 2019 at 1:25pm via crowdmark
- Math 3A03 Test \#1

Monday 4 March 2019 at 7:00pm in MDCL 1110 (room is booked for 90 minutes; you should not feel rushed)

Concepts covered recently

- Countable set
- Interval

■ Boundary point

- Boundary

■ Neighbourhood
■ Deleted neighbourhood
■ Closed set
■ Closure

- Interior point
- Isolated point
- Accumulation point

Component intervals of open sets

What does the most general open set look like?

Theorem (Component intervals)

If G is an open subset of \mathbb{R} and $G \neq \varnothing$ then there is a unique (possibly finite) sequence of disjoint open intervals $\left\{\left(a_{n}, b_{n}\right)\right\}$ such that

$$
\begin{aligned}
G & =\left(a_{1}, b_{1}\right) \cup\left(a_{2}, b_{2}\right) \cup \cdots \cup\left(a_{n}, b_{n}\right) \cup \cdots, \\
i . e ., \quad G & =\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right) .
\end{aligned}
$$

The open intervals $\left(a_{n}, b_{n}\right)$ are said to be the component intervals of G.
(Textbook (TBB) Theorem 4.15, p. 231)

Component intervals of open sets

Main ideas of proof of component intervals theorem:
■ $x \in G \Longrightarrow x$ is an interior point of $G \Longrightarrow$

- some neighbourhood of x is contained in G, i.e., $\exists c>0$ such that $(x-c, x+c) \subseteq G$
- \exists a largest neighbourhood of x that is contained in G : this "component of G " is $I_{x}=(\alpha, \beta)$, where

$$
\alpha=\inf \{a:(a, x] \subset G\}, \quad \beta=\sup \{b:[x, b) \subset G\}
$$

- I_{x} contains a rational number, i.e., $\exists r \in I_{x} \cap \mathbb{Q}$

■ We can index all the intervals I_{x} by rational numbers
■ \therefore There are are most countably many intervals that make up
G (i.e., G is the union of a sequence of intervals)

- We can choose a disjoint subsequence of these intervals whose union is all of G (see proof in textbook for details).

Open vs. Closed Sets

Definition (Complement of a set of real numbers)

If $E \subseteq \mathbb{R}$ then the complement of E is the set

$$
E^{c}=\{x \in \mathbb{R}: x \notin E\}
$$

Theorem (Open vs. Closed)
If $E \subseteq \mathbb{R}$ then E is open iff E^{c} is closed.
(Textbook (TBB) Theorem 4.16)

Open vs. Closed Sets

Theorem (Properties of open sets of real numbers)

1 The sets \mathbb{R} and \varnothing are open.
2 Any intersection of a finite number of open sets is open.
3 Any union of an arbitrary collection of open sets is open.
4 The complement of an open set is closed.
(Textbook (TBB) Theorem 4.17)

Theorem (Properties of closed sets of real numbers)

1 The sets \mathbb{R} and \varnothing are closed.
2 Any union of a finite number of closed sets is closed.
3 Any intersection of an arbitrary collection of closed sets is closed.
4 The complement of a closed set is open.
(Textbook (TBB) Theorem 4.18)

Local vs. Global properties

Definition (Bounded function)

A real-valued function f is bounded on the set E if there exists $M>0$ such that $|f(x)| \leq M$ for all $x \in E$.
(i.e., the function f is bounded on E iff $\{f(x): x \in E\}$ is a bounded set.)

Note: This is a global property because there is a single bound M associated with the entire set E.

Example

The function $f(x)=1 /\left(1+x^{2}\right)$ is bounded on \mathbb{R}. e.g., $M=1$.

Local vs. Global properties

$f(x)=1 / x$ is not bounded on the interval $E=(0,1)$.

Local vs. Global properties

$f(x)=1 / x$ is locally bounded on the interval $E=(0,1)$,
i.e., $\forall x \in E, \exists \delta_{x}, M_{x}>0$ † $|f(t)| \leq M_{x} \forall t \in\left(x-\delta_{x}, x+\delta_{x}\right)$.

Local vs. Global properties

Definition (Locally bounded at a point)

A real-valued function f is locally bounded at the point x if there is a neighbourhood of x in which f is bounded, i.e., there exists $\delta_{x}>0$ and $M_{x}>0$ such that $|f(t)| \leq M_{x}$ for all $t \in\left(x-\delta_{x}, x+\delta_{x}\right)$.

Definition (Locally bounded on a set)

A real-valued function f is locally bounded on the set E if f is locally bounded at each point $x \in E$.

Note: The size of the neighbourhood (δ_{x}) and the local bound $\left(M_{x}\right)$ depend on the point x.

Local vs. Global properties

Example (Function that is not even locally bounded)
Give an example of a function that is defined on the interval $(0,1)$ but is not locally bounded on $(0,1)$.
(solution on board)

Example (Function that is a mess near 0)

Give an example of a function $f(x)$ that is defined everywhere, yet in any neighbourhood of the origin there are infinitely many points at which f is not locally bounded.
(solution on board)
Extra Challenge Problem: Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is not locally bounded anywhere?

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 16
Topology of \mathbb{R} IV
Wednesday 13 February 2019

Announcements

■ Assignment 3 is Due Friday 15 Feb 2019 at 1:25pm via crowdmark

- Math 3A03 Test \#1

Monday 4 March 2019 at 7:00pm in MDCL 1110
(room is booked for 90 minutes; you should not feel rushed)

Local vs. Global properties

Example (Function that is not even locally bounded)
Give an example of a function that is defined on the interval $(0,1)$ but is not locally bounded on $(0,1)$.
(solution on board)

Example (Function that is a mess near 0)

Give an example of a function $f(x)$ that is defined everywhere, yet in any neighbourhood of the origin there are infinitely many points at which f is not locally bounded.
(solution on board)
Extra Challenge Problem: Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is not locally bounded anywhere?

Local vs. Global properties

■ What condition(s) rule out such pathological behaviour?
■ When does a property holding locally (near any given point in a set) imply that it holds globally (for the set as a whole)?

■ For example: What condition(s) must a set $E \subseteq \mathbb{R}$ satisfy in order that a function f that is locally bounded on E is necessarily bounded on E ?

- We will see that the condition we are seeking is that the set E must be "compact" ...

Compactness

Recall the Bolzano-Weierstrass theorem, which we proved when investigating sequences of real numbers:

Theorem (Bolzano-Weierstrass theorem for sequences)

Every bounded sequence in \mathbb{R} contains a convergent subsequence.

For any set of real numbers, we define:
Definition (Bolzano-Weierstrass property)
A set $E \subseteq \mathbb{R}$ is said to have the Bolzano-Weierstrass property iff any sequence of points chosen from E has a subsequence that converges to a point in E.

Compactness

Theorem (Bolzano-Weierstrass theorem for sets)

A set $E \subseteq \mathbb{R}$ has the Bolzano-Weierstrass property iff E is closed and bounded.
(solution on board) (Textbook (TBB) Theorem 4.21, p. 241)
Notes:

- Why do we need both closed and bounded? Why didn't we need closed in the original version of the Bolzano-Weierstrass theorem (for sequences)?
- Because we didn't require the limit of the convergent subsequence to be in the set!
- The Bolzano-Weierstrass theorem for sets implies that "If $E \subseteq \mathbb{R}$ is bounded then its closure \bar{E} has the Bolzano-Weierstrass property".
- The original Bolzano-Weierstrass theorem for sequences is a special case of this statement because any convergent sequence together with its limit is a closed set.

Bijections

The terms one-to-one (injective), onto (surjective), and one-to-one correspondence (bijection) are giving some students trouble.
(Recall, we used bijection in our definition of countable.)

Let's take a step back and recall:
■ When we define a function, we need three things:

- the domain, i.e., the set to which the function is applied;

■ the codomain, i.e., the target set where the values of the function lie;
■ a rule for taking elements of the domain into the codomain.

- If we write $\quad f: A \rightarrow B$ then A is the domain and B is the codomain.
- The range of a function is the subset of the codomain consisting of all values of the function applied to the domain.

Bijections

Example
Let $f(x)=x^{2}, x \in \mathbb{R}$.
\square Is f onto \mathbb{R} ?

- Is f one-to-one on \mathbb{R} ? On any interval?
- Is f a bijection?

Example

- Find a bijection between $[0, \infty)$ to $[1, \infty)$.
- Find a different bijection between $[0, \infty)$ to $[1, \infty)$.

Extra Challenge Problem:
Construct a bijection between $[0,1]$ and $(0,1)$.

Compactness

Definition (Open Cover)

Let $E \subseteq \mathbb{R}$ and let \mathcal{U} be a family of open intervals. If for every $x \in E$ there exists at least one interval $U \in \mathcal{U}$ such that $x \in U$, i.e.,

$$
E \subseteq \bigcup\{U: U \in \mathcal{U}\}
$$

then \mathcal{U} is called an open cover of E.

Example (Open covers of \mathbb{N})

Give examples of open covers of \mathbb{N}.

- $\mathcal{U}=\left\{\left(n-\frac{1}{2}, n+\frac{1}{2}\right): n=1,2, \ldots\right\}$
- $\mathcal{U}=\{(0, \infty)\}$

■ $\mathcal{U}=\{(0, \infty), \mathbb{R},(\pi, 27)\}$

Compactness

Example (Open covers of $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$)
■ $\mathcal{U}=\{(0,1),(0,2), \mathbb{R},(\pi, 27)\}$

- $\mathcal{U}=\{(0,2)\}$
- $\mathcal{U}=\left\{\left(\frac{1}{n}, \frac{1}{n}+\frac{3}{4}\right): n=1,2, \ldots\right\}$

Example (Open covers of $[0,1]$)

- $\mathcal{U}=\{(-2,2)\}$
- $\mathcal{U}=\left\{\left(-\frac{1}{2}, \frac{1}{2}\right),(0,2)\right\}$
- $\mathcal{U}=\left\{\left(\frac{1}{n}, 2\right): n=1,2, \ldots\right\} \cup\left\{\left(-\frac{1}{2}, \frac{1}{2}\right)\right\}$

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 17
Topology of $\mathbb{R} \mathrm{V}$
Friday 15 February 2019

Announcements

■ Assignment 3 was Due TODAY at 1:25pm via crowdmark Solutions will be posted over the weekend.

- Assignment 4 will be posted over the weekend. Due Friday 8 March 2019 at 1:25pm via crowdmark BUT you should do it before Test \#1.
- Math 3A03 Test \#1 Monday 4 March 2019 at 7:00pm in MDCL 1110 (room is booked for 90 minutes; you should not feel rushed)

Compactness

Definition (Heine-Borel Property)

A set $E \subseteq \mathbb{R}$ is said to have the Heine-Borel property if every open cover of E can be reduced to a finite subcover. That is, if \mathcal{U} is an open cover of E, then there exists a finite subfamily $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\} \subseteq \mathcal{U}$, such that $E \subseteq U_{1} \cup U_{2} \cup \cdots \cup U_{n}$.

When does any open cover of a set E have a finite subcover?

Theorem (Heine-Borel Theorem)

A set $E \subseteq \mathbb{R}$ has the Heine-Borel property iff E is both closed and bounded.
(Textbook (TBB) pp. 249-250)

Compactness

Definition (Compact Set)

A set $E \subseteq \mathbb{R}$ is said to be compact if it has any of the following equivalent properties:
$1 E$ is closed and bounded.
$2 E$ has the Bolzano-Weierstrass property.
$3 E$ has the Heine-Borel property.
Note: In spaces other than \mathbb{R}, these three properties are not necessarily equivalent. Usually the Heine-Borel property is taken as the definition of compactness.

Compactness

Example

Prove that the interval $(0,1]$ is not compact by showing that it is not closed or not bounded.
(solution on board)

Example

Prove that the interval $(0,1]$ is not compact by showing that it does not have the Bolzano-Weierstrass property.
(solution on board)

Example

Prove that the interval $(0,1]$ is not compact by showing that it does not have the Heine-Borel property.
(solution on board)

Compactness

Example (Classic non-trivial compactness argument)

Let E be a compact subset of \mathbb{R}. Prove that if $f: E \rightarrow \mathbb{R}$ is locally bounded on E then f is bounded on E.
(solution on board)
Bolzano-Weierstrass approach: Textbook (TBB) p. 242 Heine-Borel approach: Textbook (TBB) p. 251

Example (Converse of above example)
Let $E \subseteq \mathbb{R}$. If every function $f: E \rightarrow \mathbb{R}$ that is locally bounded on E is bounded on E, then E is compact.
(solution on board)
Note: Contrapositive of converse is: If $E \subseteq \mathbb{R}$ is not compact then $\exists f: E \rightarrow \mathbb{R}$ f f is locally bounded on E but not bounded on E.

Complements and Closures problem

Example

How many distinct sets can be obtained from $E=[0,1]$ by applying the complement and closure operations?

Consider this sequence of sets: $E_{1}=[0,1]$,
$E_{2}=E_{1}^{c}=(-\infty, 0) \cup(1, \infty), E_{3}=\overline{E_{2}}=(-\infty, 0] \cup[1, \infty)$,
$E_{4}=E_{3}^{c}=(0,1), E_{5}=\overline{E_{4}}=E_{1}$.
Does this prove the answer is 4 ?

Extra Challenge Problem

If $E \subseteq \mathbb{R}$, how many distinct sets can be obtained by taking complements or closures of E and its successors? Put another way, if $\left\{E_{n}\right\}$ is a sequence of sets produced by taking the complement or closure of the previous set, how many distinct sets can such a sequence contain? If the answer is finite, find a set E that generates the maximum number in this way.

