
1/62

1 Introduction

2 Properties of R

3 Properties of R II

4 Properties of R III

5 Properties of R IV

Instructor: David Earn Mathematics 3A03 Real Analysis I



Introduction 2/62

Mathematics
and Statistics∫
M

dω =

∫
∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 1
Introduction

Monday 7 January 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I



Introduction Course Information 3/62

Where to find course information

The course web site:
http://www.math.mcmaster.ca/earn/3A03

Click on Course information to download course information
as pdf file. You are expected to read and pay attention to
every word of this file.

Let’s have a look now. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03
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What is a “real” number?

Instructor: David Earn Mathematics 3A03 Real Analysis I



Introduction What is a real number? 5/62

What is a “real” number?

The “Reals” (R) are all the numbers that are needed to fill in
the “number line” (so it has no “gaps” or “holes”).

Why aren’t the rational numbers (Q) sufficient?

How do we know that
√

2 is not rational?

How can we prove this?
Approach: “Proof by contradiction.”

Instructor: David Earn Mathematics 3A03 Real Analysis I
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√
2 is irrational

Theorem√
2 6∈ Q.

Proof.

Suppose
√

2 ∈ Q. Then there exist two positive integers m and n
with gcd(m, n) = 1 such that m/n =

√
2.

∴
(m
n

)2
=
(√

2
)2

=⇒ m2

n2
= 2 =⇒ m2 = 2n2.

∴ m2 is even =⇒ m is even (∵ odd numbers have odd squares).

∴ m = 2k for some k ∈ N.

∴ 4k2 = m2 = 2n2 =⇒ 2k2 = n2 =⇒ n is even.

∴ 2 is a factor of both m and n. Contradiction! ∴
√

2 6∈ Q.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Does
√

2 exist?

We have established that
√

2 is not rational.

But do we really know it exists?

Can we do without it?

No. Objects with side length
√

2 exist!

1

√
2

1

So irrational numbers are “real”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What exactly are non-rational real numbers?

We have solid intuition for what rational numbers are.
(Ratios of integers.)

The number line contains numbers that are not rational.

Can we construct irrational numbers?
(Just as we construct rationals as ratios of integers?)

Do we need to construct integers first?

Maybe we should start with 0, 1, 2, . . .

But what exactly are we supposed to construct numbers from?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Informal introduction to construction of numbers (N)

Assume we know what a set is.

Define 0 ≡ ∅ = {} (the empty set)

Define 1 ≡ {0} = {∅} = {{}}

Define 2 ≡ {0, 1} = {{}, {{}}}

Define n + 1 ≡ n ∪ {n} (successor function)

Define natural numbers N = {1, 2, 3, . . . }
Some books define N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}.
It is more common to define N to start with 1.

Thus, n is defined to be a set containing n elements.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Informal introduction to construction of numbers (N)

Historical note:

We have defined n to be a set containing n elements.

Logicians first tried to define n as “the set of all sets
containing n elements”.

The earlier definition possibly better captures our intuitive
notion of what n “really is”, but such “sets” are unweildy and
create serious challenges for development of mathematical
foundations.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Introduction N, Z, Q, R, . . . 11/62

Informal introduction to construction of numbers (N)

Order of natural numbers:

Natural numbers defined as above have the right order:

m ≤ n ⇐⇒ m ⊆ n

Note: we define “≤” on natural numbers via “⊆” on sets.

Addition and multiplication of natural numbers:

Still possible to define in terms of sets, but trickier.

We’ll defer this for later, after gaining more experience with
rigorous mathematical concepts.

If you can’t wait, see this free e-book:

“Transition to Higher Mathematics”
http://openscholarship.wustl.edu/books/10/.

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://openscholarship.wustl.edu/books/10/
http://openscholarship.wustl.edu/books/10/
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Informal introduction to construction of numbers (Z)

Integers:

Need additive inverses for all natural numbers.

Need to define · , +, −, for all pairs of integers.

Again, possible to define everything via set theory.

Again, we’ll defer this for later.

For now, we’ll assume we “know” what the naturals N and
the integers Z “are”.

We can then construct the rationals Q. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of R

Wednesday 9 January 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Where to find course information

The course web site:
http://www.math.mcmaster.ca/earn/3A03

Click on Course information to download pdf file.

Read it!!

Check the course web site regularly!

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03
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What we did last class

The “Reals” (R) are all the numbers that are needed to fill in
the “number line” (so it has no “gaps” or “holes”).

The rationals (Q) have “holes”, e.g.,
√

2.

Numbers can be constructed using sets. We will discuss this
informally. A more formal approach is taken in Math 4L03
(Mathematical Logic) or in this online e-book.

The naturals (N = {1, 2, 3, . . . }) can be constructed from ∅:
0 = ∅, 1 = {0}, 2 = {0, 1}, . . . , n + 1 = n ∪ {n}.
The integers (Z), and operations on them (+,−, · ), can also
be constructed from sets and set operations
(but we deferred that for later).

Given N and Z, we can construct Q. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://openscholarship.wustl.edu/books/10/
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Informal introduction to construction of numbers (Q)

Rationals:

Idea: Associate Q with Z× N

Use notation
a

b
∈ Q if (a, b) ∈ Z× N.

Define equivalence of rational numbers:

a

b
=

c

d
def
= a · d = b · c

Define order for rational numbers:

a

b
≤ c

d
def
= a · d ≤ b · c

Instructor: David Earn Mathematics 3A03 Real Analysis I



Properties of R Rational numbers, Q 17/62

Informal introduction to construction of numbers (Q)

Rationals, continued:

Define operations on rational numbers:

a

b
+

c

d
def
=

ad + bc

bd

a

b
· c
d

def
=

a · c
b · d

Constructed in this way (ultimately from the empty set),
Q satisfies all the standard properties we associate with the
rational numbers.

Formally, Q is a set of equivalence classes of Z× N.
Extra Challenge Problem: Are “+” and “·” well-defined on Q?

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://en.wikipedia.org/wiki/Equivalence_class
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Properties of the rational numbers (Q)

Addition:

A1 Closed and commutative under addition. For any x , y ∈ Q
there is a number x + y ∈ Q and x + y = y + x .

A2 Associative under addition. For any x , y , z ∈ Q the identity

(x + y) + z = x + (y + z)

is true.

A3 Existence and uniqueness of additive identity. There is a
unique number 0 ∈ Q such that, for all x ∈ Q,

x + 0 = 0 + x = x .

A4 Existence of additive inverses. For any number x ∈ Q there is
a corresponding number denoted by −x with the property that

x + (−x) = 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the rational numbers (Q)

Multiplication:

M1 Closed and commutative under multiplication. For any
x , y ∈ Q there is a number xy ∈ Q and xy = yx .

M2 Associative under multiplication. For any x , y , z ∈ Q the
identity (xy)z = x(yz) is true.

M3 Existence and uniqueness of multiplicative identity. There is a
unique number 1 ∈ Q \ {0} such that, for all x ∈ Q,
x1 = 1x = x .

M4 Existence of multiplicative inverses. For any non-zero number
x ∈ Q there is a corresponding number denoted by x−1 with
the property that xx−1 = 1.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of the rational numbers (Q)

Addition and multiplication together:

AM1 Distributive law. For any x , y , z ∈ Q the identity

(x + y)z = xz + yz

is true.

The 9 properties (A1–A4, M1–M4, AM1) make the rational
numbers Q a field.

Note: M3 ensures 0 6= 1 to exclude the uninteresting case of a field
with only one element.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Standard Mathematical Shorthand

Quantifiers

∀ for all

∃ there exists

@ there does not exist

∃! there exists a unique

Logical operands

∧ logical and

∨ logical or

¬ logical not

Y logical exclusive or

Note: A Y B ≡ (A ∨ B) ∧ (¬A ∨ ¬B)

Other shorthand

∴ therefore

)– such that

≡ equivalent

∵ because

⇐⇒ if and only if

⇒⇐ contradiction

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The field axioms (in mathematical shorthand) for field F
Addition axioms

A1 Closed, commutative. ∀x , y ∈ F,
∃ (x+y) ∈ F ∧ (x+y) = (y+x).

A2 Associative. ∀x , y , z ∈ F,
(x + y) + z = x + (y + z).

A3 Identity. ∃! 0 ∈ F )– ∀x ∈ F,
x + 0 = 0 + x = x .

A4 Inverses. ∀x ∈ F, ∃ (−x) ∈ F )–
x + (−x) = 0.

Multiplication axioms

M1 Closed, commutative. ∀x , y ∈ F,
∃ (xy) ∈ F ∧ (xy) = (yx).

M2 Associative. ∀x , y , z ∈ F,
(xy)z = x(yz).

M3 Identity. ∃! 1 ∈ F \{0} )–
∀x ∈ F, x1 = 1x = x .

M4 Inverses. ∀x ∈ F \{0},
∃ x−1 ∈ F )– xx−1 = 1.

Distribution axiom

AM1 Distribution. ∀x , y , z ∈ F, (x + y)z = xz + yz .

Any collection F of mathematical objects is called a field if it
satisfies these 9 algebraic properties.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Examples of fields

Set Field? Why?

rationals (Q) YES

integers (Z) NO no multiplicative inverses

reals (R) YES

complexes (C) YES

integers modulo 3 (Z3) YES 2−1 = 2

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The integers modulo 3 (Z3)

Imagine a clock that repeats after 3 hours rather than 12 hours.

Z3 contains the three elements {0, 1, 2}, with addition and
multiplication defined as follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Ordered fields

A field F is said to be ordered if the following properties hold:

Order axioms

O1 For any x , y ∈ F, exactly one of the statements x = y , x < y
or y < x is true (“trichotomy”), i.e.,

∀x , y ∈ F,
(
(x = y) ∧ ¬(x < y) ∧ ¬(y < x)

)
Y
(
(x 6= y) ∧ [(x < y) Y (y < x)]

)
O2 For any x , y , z ∈ F, if x < y is true and y < z is true, then

x < z is true, i.e., ∀x , y , z ∈ F, (x < y) ∧ (y < z) =⇒ (x < z)

O3 For any x , y ∈ F, if x < y is true, then x + z < y + z is also
true for any z ∈ F, i.e., ∀x , y ∈ F, (x < y) =⇒ x + z < y + z, ∀z ∈ F

O4 For any x , y , z ∈ F, if x < y is true and z > 0 is true, then
xz < yz is also true,
i.e., ∀x , y , z ∈ F, (x < y) ∧ (0 < z) =⇒ (xz < yz)

Instructor: David Earn Mathematics 3A03 Real Analysis I



Properties of R Fields 26/62

Examples of ordered fields

Field Ordered? Why?

rationals (Q) YES

reals (R) YES

integers modulo 3 (Z3) NO Next slide. . .

complexes (C) NO

Extra Challenge Problem:
Prove the field C cannot
be ordered.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The field of integers modulo 3 cannot be ordered

Proposition

Z3 is not an ordered field.

Proof.

Approach: proof by contradiction.

If Z3 is ordered, then O1 (trichotomy) implies that either 0 < 1 or
1 < 0 (and not both).

Suppose 0 < 1 and 1 6< 0. Then O3 =⇒ 0 + 1 < 1 + 1,
i.e., 1 < 2. ∴ O2 (transitivity) =⇒ 0 < 2.

Using O3 again, we have 0 + 1 < 2 + 1, i.e., 1 < 0. ⇒⇐
Now suppose 1 < 0. Similarly reach a contradiction (check!).
∴ Z3 cannot be ordered.

Food for thought: Is it possible for any finite field be ordered?
Instructor: David Earn Mathematics 3A03 Real Analysis I
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What other properties does R have?

R is an ordered field.

R includes numbers that are not in Q, e.g.,
√

2.

What additional properties does R have?

Only one more property is required to fully characterize R. . .
It is related to upper and lower bounds. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements and comments arising from Lecture 2

My office hours will be Mondays 1:30pm–2:20pm going
forward. (Or by appointment.)

Questions for next week’s tutorials and some “Logic Notes”
are posted on the Tutorials page of the course web site.

Field Axiom M3 was corrected before posting slides for
Lecture 2.

No claim is being made that the field axioms as stated are
absolutely minimal (i.e., that there are no redundancies). In
fact, we don’t need to assume:

Identities are unique.
Inverses are unique.
Commutivity under addition (!).

Usually a slightly redundant set of axioms is stated to
emphasize all the key properties.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/tutorials/tutorials.html
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An additional online resource

A sequence of 15 short (3–7 minute) videos covering the very
basics of mathematical logic and theorem proving has been posted
associated with a course at the University of Toronto:

Go to http://uoft.me/MAT137, click on the Videos tab and
then on Playlist 1.

These videos go at a slower pace than we do, and may be very
helpful to you to get your head around the idea of a rigorous
mathematical proof.

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://uoft.me/MAT137
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More comments arising from Lecture 2

The property that completes the specification of R has to
somehow fill in all the “holes” in Q.

It is true that if x , y ∈ Q then ∃r ∈ R \Q with x < r < y .
But this property is not sufficient to characterize R, because it
is satisfied by subsets of R.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Bounds

Definition (Upper Bound)

Let E ⊆ R. A number M is said to be an upper bound for E if
x ≤ M for all x ∈ E .

A set that has an upper bound is said to be bounded above.

Definition (Lower Bound)

Let E ⊆ R. A number m is said to be a lower bound for E if
m ≤ x for all x ∈ E .

A set that has a lower bound is said to be bounded below.

A set that is bounded above and below is said to be bounded.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Properties of R II Completeness of R 34/62

Maxima and Minima

Definition (Maximum)

Let E ⊆ R. A number M is said to be the maximum of E if M is
an upper bound for E and M ∈ E . If such an M exists we write
M = maxE .

Definition (Minimum)

Let E ⊆ R. A number m is said to be the minimum of E if m is a
lower bound for E and m ∈ E . If such an m exists we write
m = minE .

We refer to “the” maximum and “the” minimum of E because
there cannot be more than one of each. (Proof?)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Bounds, maxima and minima

Example

Set bounded
below

bounded
above bounded min max

[−1, 1] YES YES YES −1 1

[−1, 1) YES YES YES −1 @

[−1,∞) YES NO NO −1 @

[−1,−1
4) ∪ (12 , 1] YES YES YES −1 1

N YES NO NO 1 @

R NO NO NO @ @

∅ YES YES YES @ @

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Least upper bounds

Definition (Least Upper Bound/Supremum)

A number M is said to be the least upper bound or supremum
of a set E if

(i) M is an upper bound of E , and

(ii) if M̃ is an upper bound of E then M ≤ M̃.

If M is the least upper bound of E then we write M = supE .

Note: We can refer to “the” least upper bound of E because there
cannot be more than one. (Proof?)

What sets have least upper bounds?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Least upper bounds

Example

Set bounded
above sup

[−1, 1] YES 1

[−1, 1) YES 1

∅ YES @

{x ∈ R : x2 < 2} YES
√

2

{x ∈ Q : x2 < 2} YES /∈ Q

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Least upper bounds

The property that any set that is bounded above has a least upper
bound is what distinguishes the real numbers R from the rational
numbers Q.

Does this realization allow us to finish constructing R?

YES, but we will delay the construction until later in the course.

For now, we will simply annoint the least upper bound property as
an axiom:

Completeness Axiom

If E ⊆ R, E 6= ∅, and E is bounded above, then E has a least
upper bound (i.e., supE exists and supE ∈ R).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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R is a complete ordered field

Any field F that satisfies the order axioms and the
completeness axiom is said to be a complete ordered field.

R is a complete ordered field.

Are there any other complete ordered fields?

Extra Challenge Problem:
Prove that R is the only complete ordered field.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Greatest lower bounds

Definition (Greatest Lower Bound/Infimum)

A number m is said to be the greatest lower bound or infimum
of a set E if

(i) m is a lower bound of E , and

(ii) if m̃ is a lower bound of E then m̃ ≤ m.

If m is the greatest lower bound of E then we write m = inf E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Greatest lower bounds

The existence of least upper bounds was taken as an axiom.

The existence of greatest lower bounds then follows.

Theorem

If E ⊆ R, E 6= ∅, and E is bounded below, then E has a greatest
lower bound (i.e., inf E exists and inf E ∈ R).

Proof?

Idea of proof:
E ⊂ R

b

L = {` ∈ R : ` is a lower bound of E}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Greatest lower bounds

Theorem

If E ⊆ R, E 6= ∅, and E is bounded below, then E has a greatest
lower bound (i.e., inf E exists and inf E ∈ R).

Proof. Recall graphical idea of proof.

Let L = {` ∈ R : ` is a lower bound of E}. Then:

L 6= ∅ (∵ E is bounded below).

L is bounded above (∵ x ∈ E =⇒ x an upper bound for L).

∴ L has a least upper bound, say b = sup L.

Now show b = inf E . First show b ∈ L (i.e., x ∈ E =⇒ b ≤ x).
Suppose x ∈ E and b 6≤ x ; then by O1 (trichotomy), we must have
b > x . Now b = sup L and x < b, so x is not an upper bound of L,
i.e., there is some ` ∈ L such that x < `. But then ` is not a lower
bound of E . ⇒⇐ ∴ b ∈ L and b is also max L, i.e., b = inf E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Comment on least upper bounds and greatest lower bounds

The proof above shows that:

inf E = sup{x ∈ R : x is a lower bound of E}

Similarly:

supE = inf{x ∈ R : x is a upper bound of E}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Some notational abuse concerning sup and inf

By convention, for convenience, we (and your textbook) sometimes
write:

inf R = −∞
supR = ∞
inf ∅ = ∞

sup∅ = −∞

This is an abuse of notation, since ∅ and R do not have least
upper or greatest lower bounds in R. ∞ is not a real number.

If you are asked “What is the least upper bound of R?” how
should you answer?
Correct answer: “R is not bounded above so it does not have a
least upper bound.”

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Consequences of the real number axioms (§§1.7–1.9)

Theorem (Archimedean property)

The set of natural numbers N has no upper bound.

Proof.

Suppose N is bounded above. Then it has a least upper bound, say
B = supN. Thus, for all n ∈ N, n ≤ B. But if n ∈ N then
n + 1 ∈ N, hence n + 1 ≤ B for all n ∈ N, i.e., n ≤ B − 1 for all
n ∈ N. Thus, B − 1 is an upper bound for N, contradicting B
being the least upper bound.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Consequences of the real number axioms (§§1.7–1.9)

Theorem (Equivalences of the Archimedean property)

1 The set of natural numbers N has no upper bound.

2 Given any x ∈ R, there exists n ∈ N such that n > x .

i.e., No matter how large a real number x is, there
is always a natural number n that is larger.

3 Given any x > 0 and y > 0, there exists n ∈ N such that
nx > y .

i.e., Given any positive number y , no matter how large, and any positive
number x , no matter how small, one can add x to itself sufficiently

many times so that the result exceeds y (i.e., nx > y for some n ∈ N).

4 Given any x > 0, there exists n ∈ N such that 1
n < x .

i.e., Given any positive number x , no matter how small, one can
always find a fraction 1/n that is smaller than x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Comments arising. . .

Remember Assignment 1 is due this Friday @ 1:25pm in the
appropriate locker.

NOTE: Typos in question 4 have been corrected (there were
missing brackets). Please download the revised question sheet
for Assignment 1.

Last time we ended with some equivalent conditions relating
R and N.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Consequences of the real number axioms (§§1.7–1.9)

Theorem (Well-Ordering Property)

Every nonempty subset of N has a smallest element.

Proof.

Let S ⊆ N, S 6= ∅. Then S is a non-empty set of real numbers that is
bounded below (for instance by 0), and hence has a greatest lower bound
(in R). Let b = inf S . If b ∈ S then b = minS and we are done.

Suppose b /∈ S . Then ∃n ∈ S such that n < b + 1 (otherwise b + 1
would be a lower bound for S that is greater than b) and, moreover,
n > b (since b /∈ S). ∴ n ∈ S ∩ (b, b + 1). But just as b + 1 cannot be
a lower bound for S , n cannot be a lower bound for S (since it too would
be a lower bound greater than b = inf S). ∴ ∃m ∈ S ∩ (b, n). But we
now have b < m < n < b + 1, which is impossible because m and n are
both integers. ⇒⇐ Therefore b ∈ S , so b = minS .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Consequences of the real number axioms (§§1.7–1.9)

Corollary

Every nonempty subset of Z that is bounded below (in R) has a
smallest element.

Proof.

The proof is identical to the proof of the well-ordering property for
N except that we start with a set of integers that is bounded below,
rather than having to first identify a lower bound for the set.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Consequences of the real number axioms (§§1.7–1.9)

Theorem (Principle of Mathematical Induction)

Let S ⊆ N. Suppose that 1 ∈ S and, for every n ∈ N, if n ∈ S
then n + 1 ∈ S . Then S = N.

Proof.

Let E = N \ S and suppose E 6= ∅. Since E ⊂ N and E 6= ∅, the
well-ordering property implies E has a smallest element, say m.
Now 1 ∈ S , so 1 /∈ E and hence m > 1. But m is the least element
of E , so the natural number m − 1 /∈ E , and hence we must have
m− 1 ∈ S . But then it follows that (m− 1) + 1 = m ∈ S , which is
impossible because m ∈ E . ⇒⇐ ∴ E = ∅, i.e., S = N.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Consequences of the real number axioms (§§1.7–1.9)

Definition (Dense Sets)

A set E of real numbers is said to be dense (or dense in R) if
every interval (a, b) contains a point of E .

Theorem (Q is dense in R)

If a, b ∈ R and a < b then there is a rational number in the
interval (a, b).

Corollary

Every real number can be approximated arbitrarily well by a
rational number.

Given x ∈ R, consider the interval
(
x − 1

n
, x + 1

n

)
for n ∈ N.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R (§1.10)

Definition (Absolute Value function)

For any x ∈ R,

|x | def
=

{
x if x ≥ 0,

−x if x < 0.

Theorem (Properties of the Absolute Value function)

For all x , y ∈ R:

1 − |x | ≤ x ≤ |x |.
2 |xy | = |x | |y |.
3 |x + y | ≤ |x |+ |y |.
4 |x | − |y | ≤ |x − y |.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R (§1.10)

Definition (Distance function or metric)

The distance between two real numbers x and y is

d(x , y) = |x − y | .

Theorem (Properties of distance function or metric)

1 d(x , y) ≥ 0 distances are positive or zero

2 d(x , y) = 0 ⇐⇒ x = y distinct points have distance > 0

3 d(x , y) = d(y , x) distance is symmetric

4 d(x , y) ≤ d(x , z) + d(z , y) the triangle inequality

Note: Any function satisfying these properties can be considered a
“distance” or “metric”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R (§1.10)

Given d(x , y) = |x − y |, the properties of the distance function are
equivalent to:

Theorem (Metric properties of the absolute value function)

For all x , y ∈ R:

1 |x | ≥ 0

2 |x | = 0 ⇐⇒ x = 0

3 |x | = |−x |

4 |x + y | ≤ |x |+ |y | (the triangle inequality)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Last time. . .

Archimedean theorem (N has no upper bound)

N is well-ordered (and an important corollary)

Principle of Mathematical Induction

Distance/metric definitions.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Plan for today’s class

A bit more about Distance/metrics.

Prove that Q is dense in R.

Emphasizing explorations you might make in order to discover
how to construct a proof.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Slick proof of the triangle inequality

Theorem (The Triangle Inequality)

|x + y | ≤ |x |+ |y | for all x , y ∈ R.

Proof.

Let s = sign(x + y). Then

|x + y | = s(x + y) = sx + sy ≤ |x |+ |y | .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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A non-standard metric on R

Example (finite distance between every pair of real numbers)

Let

f (x) =
|x |

1 + |x | ,

and define
d(x , y) = f (x − y) .

Prove that d(x , y) can be interpreted as a distance between x and
y because it satisfies all the properties of a metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Q is dense in R

Theorem (Q is dense in R)

If a, b ∈ R and a < b then there is a rational number in the
interval (a, b).

(solution on board)

Note: In class, we developed the ideas for the proof in the way
that you might proceed if you were trying to discover a proof from
scratch. On the following slide, a “clean” proof is presented. This
sort of proof is easy to follow, but some steps seem to be pulled
out of nowhere. You are likely to be able to construct such a clean
proof only after already working through the ideas in something
like the way we did in class.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Q is dense in R

Theorem (Q is dense in R)

If a, b ∈ R and a < b then there is a rational number in the
interval (a, b).

Clean proof.

Given a, b ∈ R with a < b, use the archimedean theorem to choose
n ∈ N such that n > 1

b−a , which implies nb − na > 1 and hence
na < nb − 1. If nb − 1 ∈ Z then let m = nb − 1 and note that
na < m < nb, so a < m

n < b as required. If nb − 1 /∈ Z, let
S = {j ∈ Z : j > nb − 1} and by well-ordering let m = minS .
Now, since m ∈ S , we have m > nb − 1 and since m is the least
element of S , we must have m − 1 < nb − 1 and hence m < nb.
But na < nb − 1 by construction, so na < m < nb as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I


