1 Introduction

2 Properties of \mathbb{R}

3 Properties of \mathbb{R} II

4 Properties of \mathbb{R} III

5 Properties of \mathbb{R} IV

McMaster University

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 1
Introduction
Monday 7 January 2019

Where to find course information

■ The course web site:
http://www.math.mcmaster.ca/earn/3A03
■ Click on Course information to download course information as pdf file. You are expected to read and pay attention to every word of this file.

■ Let's have a look now...

What is a "real" number?

What is a "real" number?

- The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").

■ Why aren't the rational numbers (\mathbb{Q}) sufficient?

- How do we know that $\sqrt{2}$ is not rational?
- How can we prove this?

Approach: "Proof by contradiction."

$\sqrt{2}$ is irrational

Theorem

$\sqrt{2} \notin \mathbb{Q}$.

Proof.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then there exist two positive integers m and n with $\operatorname{gcd}(m, n)=1$ such that $m / n=\sqrt{2}$.
$\therefore\left(\frac{m}{n}\right)^{2}=(\sqrt{2})^{2} \quad \Longrightarrow \quad \frac{m^{2}}{n^{2}}=2 \quad \Longrightarrow \quad m^{2}=2 n^{2}$.
$\therefore m^{2}$ is even $\Longrightarrow m$ is even (\because odd numbers have odd squares).
$\therefore m=2 k$ for some $k \in \mathbb{N}$.
$\therefore 4 k^{2}=m^{2}=2 n^{2} \quad \Longrightarrow \quad 2 k^{2}=n^{2} \quad \Longrightarrow \quad n$ is even.
$\therefore 2$ is a factor of both m and n. Contradiction! $\therefore \sqrt{2} \notin \mathbb{Q}$.

Does $\sqrt{2}$ exist?

- We have established that $\sqrt{2}$ is not rational.
- But do we really know it exists?
- Can we do without it?

■ No. Objects with side length $\sqrt{2}$ exist!

■ So irrational numbers are "real".

What exactly are non-rational real numbers?

■ We have solid intuition for what rational numbers are. (Ratios of integers.)

- The number line contains numbers that are not rational.

- Can we construct irrational numbers?
(Just as we construct rationals as ratios of integers?)
- Do we need to construct integers first?

■ Maybe we should start with $0,1,2, \ldots$
■ But what exactly are we supposed to construct numbers from?

Informal introduction to construction of numbers (\mathbb{N})

- Assume we know what a set is.

■ Define $0 \equiv \varnothing=\{ \} \quad$ (the empty set)
■ Define $1 \equiv\{0\}=\{\varnothing\}=\{\{ \}\}$
■ Define $2 \equiv\{0,1\}=\{\{ \},\{\{ \}\}\}$
■ Define $n+1 \equiv n \cup\{n\} \quad$ (successor function)
■ Define natural numbers $\mathbb{N}=\{1,2,3, \ldots\}$

- Some books define $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{N}^{+}=\{1,2,3, \ldots\}$.
- It is more common to define \mathbb{N} to start with 1 .
- Thus, n is defined to be a set containing n elements.

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

- We have defined n to be a set containing n elements.

■ Logicians first tried to define n as "the set of all sets containing n elements".

■ The earlier definition possibly better captures our intuitive notion of what n "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

■ Natural numbers defined as above have the right order:

$$
m \leq n \Longleftrightarrow m \subseteq n
$$

Note: we define " \leq " on natural numbers via " \subseteq " on sets.

Addition and multiplication of natural numbers:

- Still possible to define in terms of sets, but trickier.

■ We'll defer this for later, after gaining more experience with rigorous mathematical concepts.

■ If you can't wait, see this free e-book:
> "Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/.

Informal introduction to construction of numbers (\mathbb{Z})

Integers:

■ Need additive inverses for all natural numbers.
■ Need to define •,,+- , for all pairs of integers.
■ Again, possible to define everything via set theory.
■ Again, we'll defer this for later.

■ For now, we'll assume we "know" what the naturals \mathbb{N} and the integers \mathbb{Z} "are".

■ We can then construct the rationals \mathbb{Q}...

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 2
Properties of \mathbb{R}
Wednesday 9 January 2019

Where to find course information

- The course web site:
http://www.math.mcmaster.ca/earn/3A03
■ Click on Course information to download pdf file.
■ Read it!!
■ Check the course web site regularly!

What we did last class

- The "Reals" (\mathbb{R}) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- The rationals (\mathbb{Q}) have "holes", e.g., $\sqrt{2}$.

■ Numbers can be constructed using sets. We will discuss this informally. A more formal approach is taken in Math 4L03 (Mathematical Logic) or in this online e-book.

- The naturals $(\mathbb{N}=\{1,2,3, \ldots\})$ can be constructed from \varnothing : $0=\varnothing, 1=\{0\}, 2=\{0,1\}, \ldots, n+1=n \cup\{n\}$.
- The integers (\mathbb{Z}), and operations on them $(+,-, \cdot)$, can also be constructed from sets and set operations (but we deferred that for later).
- Given \mathbb{N} and \mathbb{Z}, we can construct \mathbb{Q}...

Informal introduction to construction of numbers (\mathbb{Q})

Rationals:

- Idea: Associate \mathbb{Q} with $\mathbb{Z} \times \mathbb{N}$
- Use notation $\frac{a}{b} \in \mathbb{Q} \quad$ if $\quad(a, b) \in \mathbb{Z} \times \mathbb{N}$.
- Define equivalence of rational numbers:

$$
\frac{a}{b}=\frac{c}{d} \quad \stackrel{\text { def }}{=} \quad a \cdot d=b \cdot c
$$

- Define order for rational numbers:

$$
\frac{a}{b} \leq \frac{c}{d} \quad \stackrel{\text { def }}{=} \quad a \cdot d \leq b \cdot c
$$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals, continued:

- Define operations on rational numbers:

$$
\begin{aligned}
\frac{a}{b}+\frac{c}{d} & \stackrel{\text { def }}{=} \frac{a d+b c}{b d} \\
\frac{a}{b} \cdot \frac{c}{d} & \stackrel{\text { def }}{=} \frac{a \cdot c}{b \cdot d}
\end{aligned}
$$

- Constructed in this way (ultimately from the empty set), \mathbb{Q} satisfies all the standard properties we associate with the rational numbers.
- Formally, \mathbb{Q} is a set of equivalence classes of $\mathbb{Z} \times \mathbb{N}$. Extra Challenge Problem: Are " + " and "." well-defined on \mathbb{Q} ?

Properties of the rational numbers (\mathbb{Q})

Addition:

A1 Closed and commutative under addition. For any $x, y \in \mathbb{Q}$ there is a number $x+y \in \mathbb{Q}$ and $x+y=y+x$.
A2 Associative under addition. For any $x, y, z \in \mathbb{Q}$ the identity

$$
(x+y)+z=x+(y+z)
$$

is true.
A3 Existence and uniqueness of additive identity. There is a unique number $0 \in \mathbb{Q}$ such that, for all $x \in \mathbb{Q}$,

$$
x+0=0+x=x .
$$

A4 Existence of additive inverses. For any number $x \in \mathbb{Q}$ there is a corresponding number denoted by $-x$ with the property that

$$
x+(-x)=0
$$

Properties of the rational numbers (\mathbb{Q})

Multiplication:

M1 Closed and commutative under multiplication. For any $x, y \in \mathbb{Q}$ there is a number $x y \in \mathbb{Q}$ and $x y=y x$.

M2 Associative under multiplication. For any $x, y, z \in \mathbb{Q}$ the identity $\quad(x y) z=x(y z) \quad$ is true.

M3 Existence and uniqueness of multiplicative identity. There is a unique number $1 \in \mathbb{Q} \backslash\{0\}$ such that, for all $x \in \mathbb{Q}$, $x 1=1 x=x$.

M4 Existence of multiplicative inverses. For any non-zero number $x \in \mathbb{Q}$ there is a corresponding number denoted by x^{-1} with the property that $\quad x x^{-1}=1$.

Properties of the rational numbers (\mathbb{Q})

Addition and multiplication together:
AM1 Distributive law. For any $x, y, z \in \mathbb{Q}$ the identity

$$
(x+y) z=x z+y z
$$

is true.

The 9 properties (A1-A4, M1-M4, AM1) make the rational numbers \mathbb{Q} a field.

Note: M3 ensures $0 \neq 1$ to exclude the uninteresting case of a field with only one element.

Standard Mathematical Shorthand

Quantifiers

$\forall \quad$ for all
\exists
\#
\exists !
there exists
there does not exist there exists a unique

Logical operands

$\wedge \quad$ logical and logical or
$\neg \quad$ logical not
マ logical exclusive or

Note: $\quad A \vee B \equiv(A \vee B) \wedge(\neg A \vee \neg B)$

Other shorthand

\therefore	therefore	\ddots	because
\dot{f}	such that	\Longleftrightarrow	if and only if
\equiv	equivalent	$\Rightarrow \Leftarrow$	contradiction

The field axioms (in mathematical shorthand) for field \mathbb{F}

Addition axioms

A1 Closed, commutative. $\forall x, y \in \mathbb{F}$, $\exists(x+y) \in \mathbb{F} \wedge(x+y)=(y+x)$.
A2 Associative. $\forall x, y, z \in \mathbb{F}$,

$$
(x+y)+z=x+(y+z)
$$

A3 Identity. $\exists!0 \in \mathbb{F} \neg \forall x \in \mathbb{F}$, $x+0=0+x=x$.
A4 Inverses. $\forall x \in \mathbb{F}, \exists(-x) \in \mathbb{F})$ $x+(-x)=0$.

Multiplication axioms

M1 Closed, commutative. $\forall x, y \in \mathbb{F}$, $\exists(x y) \in \mathbb{F} \wedge(x y)=(y x)$.
M2 Associative. $\forall x, y, z \in \mathbb{F}$, $(x y) z=x(y z)$.
M3 Identity. $\exists!1 \in \mathbb{F} \backslash\{0\}$ • $\forall x \in \mathbb{F}, x 1=1 x=x$.
M4 Inverses. $\forall x \in \mathbb{F} \backslash\{0\}$, $\exists x^{-1} \in \mathbb{F} \ni x x^{-1}=1$.

Distribution axiom

AM1 Distribution. $\forall x, y, z \in \mathbb{F},(x+y) z=x z+y z$.
Any collection \mathbb{F} of mathematical objects is called a field if it satisfies these 9 algebraic properties.

Examples of fields

Set	Field?	Why?
rationals (\mathbb{Q})	YES	
integers (\mathbb{Z})	NO	no multiplicative inverses
reals (\mathbb{R})	YES	
complexes (\mathbb{C})	YES	
integers modulo $3\left(\mathbb{Z}_{3}\right)$	YES	$2^{-1}=2$

The integers modulo $3\left(\mathbb{Z}_{3}\right)$

Imagine a clock that repeats after 3 hours rather than 12 hours.
\mathbb{Z}_{3} contains the three elements $\{0,1,2\}$, with addition and multiplication defined as follows:

$+$	$\begin{array}{lll}0 & 1 & 2\end{array}$		
0	0	1	2
1	1	2	0
2	2	0	1

	$\begin{array}{lll}0 & 1 & 2\end{array}$		
0	0	0	0
1	0	1	2
2	0	2	1

Ordered fields

A field \mathbb{F} is said to be ordered if the following properties hold:

Order axioms

O1 For any $x, y \in \mathbb{F}$, exactly one of the statements $x=y, x<y$ or $y<x$ is true ("trichotomy"), i.e., $\forall x, y \in \mathbb{F},((x=y) \wedge \neg(x<y) \wedge \neg(y<x)) \underline{\vee}((x \neq y) \wedge[(x<y) \underline{\vee}(y<x)])$

02 For any $x, y, z \in \mathbb{F}$, if $x<y$ is true and $y<z$ is true, then $x<z$ is true, i.e., $\forall x, y, z \in \mathbb{F},(x<y) \wedge(y<z) \Longrightarrow(x<z)$

O3 For any $x, y \in \mathbb{F}$, if $x<y$ is true, then $x+z<y+z$ is also true for any $z \in \mathbb{F}$, i.e., $\forall x, y \in \mathbb{F},(x<y) \Longrightarrow x+z<y+z, \forall z \in \mathbb{F}$

O4 For any $x, y, z \in \mathbb{F}$, if $x<y$ is true and $z>0$ is true, then $x z<y z$ is also true, i.e., $\forall x, y, z \in \mathbb{F},(x<y) \wedge(0<z) \Longrightarrow(x z<y z)$

Examples of ordered fields

Field	Ordered?	Why?
rationals (\mathbb{Q})	YES	
reals (\mathbb{R})	YES	
integers modulo $3\left(\mathbb{Z}_{3}\right)$	NO	Next slide. .
complexes (\mathbb{C})	NO	Extra Challenge Problem: Prove the field \mathbb{C} cannot be ordered.

The field of integers modulo 3 cannot be ordered

Proposition

\mathbb{Z}_{3} is not an ordered field.

Proof.

Approach: proof by contradiction.
If \mathbb{Z}_{3} is ordered, then O 1 (trichotomy) implies that either $0<1$ or $1<0$ (and not both).
Suppose $0<1$ and $1 \nless 0$. Then $\mathrm{O} 3 \Longrightarrow 0+1<1+1$, i.e., $1<2 . \quad \therefore \mathrm{O} 2$ (transitivity) $\Longrightarrow 0<2$. Using O 3 again, we have $0+1<2+1$, i.e., $1<0 . \Rightarrow \Leftarrow$ Now suppose $1<0$. Similarly reach a contradiction (check!).
$\therefore \mathbb{Z}_{3}$ cannot be ordered.
Food for thought: Is it possible for any finite field be ordered?

What other properties does \mathbb{R} have?

■ \mathbb{R} is an ordered field.
■ \mathbb{R} includes numbers that are not in \mathbb{Q}, e.g., $\sqrt{2}$.
■ What additional properties does \mathbb{R} have?
■ Only one more property is required to fully characterize \mathbb{R}... It is related to upper and lower bounds. . .

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 3
Properties of \mathbb{R} II
Friday 11 January 2019

Announcements and comments arising from Lecture 2

■ My office hours will be Mondays 1:30pm-2:20pm going forward. (Or by appointment.)

■ Questions for next week's tutorials and some "Logic Notes" are posted on the Tutorials page of the course web site.

- Field Axiom M3 was corrected before posting slides for Lecture 2.
- No claim is being made that the field axioms as stated are absolutely minimal (i.e., that there are no redundancies). In fact, we don't need to assume:
- Identities are unique.
- Inverses are unique.
- Commutivity under addition (!).

Usually a slightly redundant set of axioms is stated to emphasize all the key properties.

An additional online resource

A sequence of 15 short (3-7 minute) videos covering the very basics of mathematical logic and theorem proving has been posted associated with a course at the University of Toronto:

■ Go to http://uoft.me/MAT137, click on the Videos tab and then on Playlist 1.

These videos go at a slower pace than we do, and may be very helpful to you to get your head around the idea of a rigorous mathematical proof.

More comments arising from Lecture 2

- The property that completes the specification of \mathbb{R} has to somehow fill in all the "holes" in \mathbb{Q}.
- It is true that if $x, y \in \mathbb{Q}$ then $\exists r \in \mathbb{R} \backslash \mathbb{Q}$ with $x<r<y$. But this property is not sufficient to characterize \mathbb{R}, because it is satisfied by subsets of \mathbb{R}.

Bounds

Definition (Upper Bound)

Let $E \subseteq \mathbb{R}$. A number M is said to be an upper bound for E if $x \leq M$ for all $x \in E$.

A set that has an upper bound is said to be bounded above.

Definition (Lower Bound)

Let $E \subseteq \mathbb{R}$. A number m is said to be a lower bound for E if $m \leq x$ for all $x \in E$.

A set that has a lower bound is said to be bounded below.
A set that is bounded above and below is said to be bounded.

Maxima and Minima

Definition (Maximum)

Let $E \subseteq \mathbb{R}$. A number M is said to be the maximum of E if M is an upper bound for E and $M \in E$. If such an M exists we write $M=\max E$.

Definition (Minimum)

Let $E \subseteq \mathbb{R}$. A number m is said to be the minimum of E if m is a lower bound for E and $m \in E$. If such an m exists we write $m=\min E$.

We refer to "the" maximum and "the" minimum of E because there cannot be more than one of each. (Proof?)

Bounds, maxima and minima

Example					
Set	bounded below	bounded above	bounded	\min	\max
$[-1,1]$	YES	YES	YES	-1	1
$[-1,1)$	YES	YES	YES	-1	\nexists
$[-1, \infty)$	YES	NO	NO	-1	\nexists
$\left[-1,-\frac{1}{4}\right) \cup\left(\frac{1}{2}, 1\right]$	YES	YES	YES	-1	1
\mathbb{N}	YES	NO	NO	1	\nexists
\mathbb{R}	NO	NO	NO	\nexists	\nexists
\varnothing	YES	YES	YES	\nexists	\nexists

Least upper bounds

Definition (Least Upper Bound/Supremum)

A number M is said to be the least upper bound or supremum of a set E if
(i) M is an upper bound of E, and
(ii) if \widetilde{M} is an upper bound of E then $M \leq \widetilde{M}$.

If M is the least upper bound of E then we write $M=\sup E$.
Note: We can refer to "the" least upper bound of E because there cannot be more than one. (Proof?)

What sets have least upper bounds?

Least upper bounds

Example		
Set	bounded above	sup
$[-1,1]$	YES	1
$[-1,1)$	YES	1
\varnothing	YES	\nexists
$\left\{x \in \mathbb{R}: x^{2}<2\right\}$	YES	$\sqrt{2}$
$\left\{x \in \mathbb{Q}: x^{2}<2\right\}$	YES	$\notin \mathbb{Q}$

Least upper bounds

The property that any set that is bounded above has a least upper bound is what distinguishes the real numbers \mathbb{R} from the rational numbers \mathbb{Q}.

Does this realization allow us to finish constructing \mathbb{R} ?
YES, but we will delay the construction until later in the course.
For now, we will simply annoint the least upper bound property as an axiom:

Completeness Axiom

If $E \subseteq \mathbb{R}, E \neq \varnothing$, and E is bounded above, then E has a least upper bound (i.e., $\sup E$ exists and $\sup E \in \mathbb{R}$).

\mathbb{R} is a complete ordered field

- Any field \mathbb{F} that satisfies the order axioms and the completeness axiom is said to be a complete ordered field.
$\square \mathbb{R}$ is a complete ordered field.
- Are there any other complete ordered fields?

■ Extra Challenge Problem:
Prove that \mathbb{R} is the only complete ordered field.

Greatest lower bounds

Definition (Greatest Lower Bound/Infimum)

A number m is said to be the greatest lower bound or infimum of a set E if
(i) m is a lower bound of E, and
(ii) if \widetilde{m} is a lower bound of E then $\widetilde{m} \leq m$.

If m is the greatest lower bound of E then we write $m=\inf E$.

Greatest lower bounds

- The existence of least upper bounds was taken as an axiom.
- The existence of greatest lower bounds then follows.

Theorem

If $E \subseteq \mathbb{R}, E \neq \varnothing$, and E is bounded below, then E has a greatest lower bound (i.e., $\inf E$ exists and $\inf E \in \mathbb{R}$).

Proof?
Idea of proof:

$$
E \subset \mathbb{R}
$$

b
$L=\{\ell \in \mathbb{R}: \ell$ is a lower bound of $E\}$

Greatest lower bounds

Theorem

If $E \subseteq \mathbb{R}, E \neq \varnothing$, and E is bounded below, then E has a greatest lower bound (i.e., $\inf E$ exists and $\inf E \in \mathbb{R}$).

Proof. Recall graphical idea of proof.

Let $L=\{\ell \in \mathbb{R}: \ell$ is a lower bound of $E\}$. Then:

- $L \neq \varnothing(\because E$ is bounded below $)$.

■ L is bounded above $(\because x \in E \Longrightarrow x$ an upper bound for L).
■ $\therefore L$ has a least upper bound, say $b=\sup L$.
Now show $b=\inf E$. First show $b \in L$ (i.e., $x \in E \Longrightarrow b \leq x$). Suppose $x \in E$ and $b \not \leq x$; then by O1 (trichotomy), we must have $b>x$. Now $b=\sup L$ and $x<b$, so x is not an upper bound of L, i.e., there is some $\ell \in L$ such that $x<\ell$. But then ℓ is not a lower bound of $E . \Rightarrow \Leftarrow \therefore b \in L$ and b is also $\max L$, i.e., $b=\inf E$.

Comment on least upper bounds and greatest lower bounds

- The proof above shows that:

$$
\inf E=\sup \{x \in \mathbb{R}: x \text { is a lower bound of } E\}
$$

- Similarly:

$$
\sup E=\inf \{x \in \mathbb{R}: x \text { is a upper bound of } E\}
$$

Some notational abuse concerning sup and inf

By convention, for convenience, we (and your textbook) sometimes write:

$$
\begin{aligned}
\inf \mathbb{R} & =-\infty \\
\sup \mathbb{R} & =\infty \\
\inf \varnothing & =\infty \\
\sup \varnothing & =-\infty
\end{aligned}
$$

This is an abuse of notation, since \varnothing and \mathbb{R} do not have least upper or greatest lower bounds in \mathbb{R}. ∞ is not a real number.

If you are asked "What is the least upper bound of \mathbb{R} ?" how should you answer?
Correct answer: " \mathbb{R} is not bounded above so it does not have a least upper bound."

Consequences of the real number axioms ($(\S 1.7-1.9)$

Theorem (Archimedean property)
The set of natural numbers \mathbb{N} has no upper bound.

Proof.

Suppose \mathbb{N} is bounded above. Then it has a least upper bound, say $B=\sup \mathbb{N}$. Thus, for all $n \in \mathbb{N}, n \leq B$. But if $n \in \mathbb{N}$ then $n+1 \in \mathbb{N}$, hence $n+1 \leq B$ for all $n \in \mathbb{N}$, i.e., $n \leq B-1$ for all $n \in \mathbb{N}$. Thus, $B-1$ is an upper bound for \mathbb{N}, contradicting B being the least upper bound.

Consequences of the real number axioms ($(\S 1.7-1.9)$

Theorem (Equivalences of the Archimedean property)

1 The set of natural numbers \mathbb{N} has no upper bound.
2 Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n>x$.
i.e., No matter how large a real number x is, there is always a natural number n that is larger.

3 Given any $x>0$ and $y>0$, there exists $n \in \mathbb{N}$ such that $n x>y$.
i.e., Given any positive number y, no matter how large, and any positive number x, no matter how small, one can add x to itself sufficiently many times so that the result exceeds y (i.e., $n x>y$ for some $n \in \mathbb{N}$).

4 Given any $x>0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<x$.
i.e., Given any positive number x, no matter how small, one can always find a fraction $1 / n$ that is smaller than x.

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 4 Properties of \mathbb{R} III

Monday 14 January 2019

Comments arising. . .

- Remember Assignment 1 is due this Friday @ $1: 25$ pm in the appropriate locker.
- NOTE: Typos in question 4 have been corrected (there were missing brackets). Please download the revised question sheet for Assignment 1.

■ Last time we ended with some equivalent conditions relating \mathbb{R} and \mathbb{N}.

Consequences of the real number axioms ((§§1.7-1.9)

Theorem (Well-Ordering Property)

Every nonempty subset of \mathbb{N} has a smallest element.

Proof.

Let $S \subseteq \mathbb{N}, S \neq \varnothing$. Then S is a non-empty set of real numbers that is bounded below (for instance by 0), and hence has a greatest lower bound (in \mathbb{R}). Let $b=\inf S$. If $b \in S$ then $b=\min S$ and we are done.
Suppose $b \notin S$. Then $\exists n \in S$ such that $n<b+1$ (otherwise $b+1$ would be a lower bound for S that is greater than b) and, moreover, $n>b$ (since $b \notin S) . \therefore n \in S \cap(b, b+1)$. But just as $b+1$ cannot be a lower bound for S, n cannot be a lower bound for S (since it too would be a lower bound greater than $b=\inf S) . \therefore \exists m \in S \cap(b, n)$. But we now have $b<m<n<b+1$, which is impossible because m and n are both integers. $\Rightarrow \Leftarrow$ Therefore $b \in S$, so $b=\min S$.

Consequences of the real number axioms ((§§1.7-1.9)

Corollary

Every nonempty subset of \mathbb{Z} that is bounded below (in \mathbb{R}) has a smallest element.

Proof.

The proof is identical to the proof of the well-ordering property for \mathbb{N} except that we start with a set of integers that is bounded below, rather than having to first identify a lower bound for the set.

Consequences of the real number axioms ((§§1.7-1.9)

Theorem (Principle of Mathematical Induction)

Let $S \subseteq \mathbb{N}$. Suppose that $1 \in S$ and, for every $n \in \mathbb{N}$, if $n \in S$ then $n+1 \in S$. Then $S=\mathbb{N}$.

Proof.

Let $E=\mathbb{N} \backslash S$ and suppose $E \neq \varnothing$. Since $E \subset \mathbb{N}$ and $E \neq \varnothing$, the well-ordering property implies E has a smallest element, say m.
Now $1 \in S$, so $1 \notin E$ and hence $m>1$. But m is the least element of E, so the natural number $m-1 \notin E$, and hence we must have $m-1 \in S$. But then it follows that $(m-1)+1=m \in S$, which is impossible because $m \in E . \quad \Rightarrow \Leftarrow \therefore E=\varnothing$, i.e., $S=\mathbb{N}$.

Consequences of the real number axioms ((§§1.7-1.9)

Definition (Dense Sets)

A set E of real numbers is said to be dense (or dense in \mathbb{R}) if every interval (a, b) contains a point of E.

Theorem $(\mathbb{Q}$ is dense in $\mathbb{R})$
If $a, b \in \mathbb{R}$ and $a<b$ then there is a rational number in the interval (a, b).

Corollary
Every real number can be approximated arbitrarily well by a rational number.

Given $x \in \mathbb{R}$, consider the interval $\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$ for $n \in \mathbb{N}$.

The metric structure of $\mathbb{R}(\S 1.10)$

Definition (Absolute Value function)

For any $x \in \mathbb{R}$,

$$
|x| \stackrel{\text { def }}{=} \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Theorem (Properties of the Absolute Value function)
For all $x, y \in \mathbb{R}$:
$1-|x| \leq x \leq|x|$.
$2|x y|=|x||y|$.
$3|x+y| \leq|x|+|y|$.
$4|x|-|y| \leq|x-y|$.

The metric structure of $\mathbb{R}(\$ 1.10)$

Definition (Distance function or metric)

The distance between two real numbers x and y is

$$
d(x, y)=|x-y|
$$

Theorem (Properties of distance function or metric)

$1 d(x, y) \geq 0$
$2 d(x, y)=0 \Longleftrightarrow x=y \quad$ distinct points have distance >0
$3 d(x, y)=d(y, x)$
$4 d(x, y) \leq d(x, z)+d(z, y)$
distances are positive or zero distance is symmetric the triangle inequality

Note: Any function satisfying these properties can be considered a "distance" or "metric".

The metric structure of $\mathbb{R}(\$ 1.10)$

Given $d(x, y)=|x-y|$, the properties of the distance function are equivalent to:

Theorem (Metric properties of the absolute value function)
For all $x, y \in \mathbb{R}$:
$1|x| \geq 0$
$2|x|=0 \Longleftrightarrow x=0$
$3|x|=|-x|$
$4|x+y| \leq|x|+|y| \quad$ (the triangle inequality)

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 5
Properties of \mathbb{R} IV
Wednesday 16 January 2019

Last time. . .

- Archimedean theorem (\mathbb{N} has no upper bound)
$■ \mathbb{N}$ is well-ordered (and an important corollary)
- Principle of Mathematical Induction

■ Distance/metric definitions.

Plan for today's class

- A bit more about Distance/metrics.

■ Prove that \mathbb{Q} is dense in \mathbb{R}.

- Emphasizing explorations you might make in order to discover how to construct a proof.

Slick proof of the triangle inequality

Theorem (The Triangle Inequality)
$|x+y| \leq|x|+|y|$ for all $x, y \in \mathbb{R}$.

Proof.

Let $s=\operatorname{sign}(x+y)$. Then

$$
|x+y|=s(x+y)=s x+s y \leq|x|+|y| .
$$

A non-standard metric on \mathbb{R}

Example (finite distance between every pair of real numbers)

Let

$$
f(x)=\frac{|x|}{1+|x|}
$$

and define

$$
d(x, y)=f(x-y)
$$

Prove that $d(x, y)$ can be interpreted as a distance between x and y because it satisfies all the properties of a metric.

\mathbb{Q} is dense in \mathbb{R}

Theorem (\mathbb{Q} is dense in \mathbb{R})

If $a, b \in \mathbb{R}$ and $a<b$ then there is a rational number in the interval (a, b).
(solution on board)
Note: In class, we developed the ideas for the proof in the way that you might proceed if you were trying to discover a proof from scratch. On the following slide, a "clean" proof is presented. This sort of proof is easy to follow, but some steps seem to be pulled out of nowhere. You are likely to be able to construct such a clean proof only after already working through the ideas in something like the way we did in class.

\mathbb{Q} is dense in \mathbb{R}

Theorem (\mathbb{Q} is dense in \mathbb{R})

If $a, b \in \mathbb{R}$ and $a<b$ then there is a rational number in the interval (a, b).

Clean proof.

Given $a, b \in \mathbb{R}$ with $a<b$, use the archimedean theorem to choose $n \in \mathbb{N}$ such that $n>\frac{1}{b-a}$, which implies $n b-n a>1$ and hence $n a<n b-1$. If $n b-1 \in \mathbb{Z}$ then let $m=n b-1$ and note that $n a<m<n b$, so $a<\frac{m}{n}<b$ as required. If $n b-1 \notin \mathbb{Z}$, let $S=\{j \in \mathbb{Z}: j>n b-1\}$ and by well-ordering let $m=\min S$. Now, since $m \in S$, we have $m>n b-1$ and since m is the least element of S, we must have $m-1<n b-1$ and hence $m<n b$. But $n a<n b-1$ by construction, so $n a<m<n b$ as required.

