

- **2** Properties of \mathbb{R}
- **3** Properties of \mathbb{R} II
- 4 Properties of \mathbb{R} III
- **5** Properties of \mathbb{R} IV

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 1 Introduction Monday 7 January 2019

Where to find course information

- The course web site: http://www.math.mcmaster.ca/earn/3A03
- Click on Course information to download course information as pdf file. You are expected to read and pay attention to every word of this file.
- Let's have a look now...

What is a "real" number?

What is a "real" number?

- The "Reals" (ℝ) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- Why aren't the rational numbers (Q) sufficient?

- How do we know that $\sqrt{2}$ is not rational?
- How can we prove this? <u>Approach</u>: "Proof by contradiction."

$\sqrt{2}$ is irrational

Theorem

$$\sqrt{2} \notin \mathbb{Q}.$$

Proof.

Suppose $\sqrt{2} \in \mathbb{Q}$. Then there exist two positive integers *m* and *n* with gcd(m, n) = 1 such that $m/n = \sqrt{2}$.

$$\therefore \left(\frac{m}{n}\right)^2 = \left(\sqrt{2}\right)^2 \implies \frac{m^2}{n^2} = 2 \implies m^2 = 2n^2.$$

 $\therefore m^2$ is even $\implies m$ is even (\because odd numbers have odd squares).

$$\therefore m = 2k$$
 for some $k \in \mathbb{N}$.

$$\therefore 4k^2 = m^2 = 2n^2 \implies 2k^2 = n^2 \implies n \text{ is even}.$$

 \therefore 2 is a factor of both *m* and *n*. Contradiction! $\therefore \sqrt{2} \notin \mathbb{Q}$.

Does $\sqrt{2}$ exist?

- We have established that $\sqrt{2}$ is not rational.
- But do we really know it exists?
- Can we do without it?
- No. Objects with side length $\sqrt{2}$ exist!

So irrational numbers are "real".

What exactly are non-rational real numbers?

- We have solid intuition for what rational numbers are. (Ratios of integers.)
- The number line contains numbers that are not rational.

- Can we *construct* irrational numbers?
 (Just as we construct rationals as ratios of integers?)
- Do we need to *construct* integers first?
- Maybe we should start with 0, 1, 2, ...
- But <u>what</u> exactly are we supposed to construct numbers <u>from</u>?

Informal introduction to construction of numbers (\mathbb{N})

- Assume we know what a set is.
- Define $0 \equiv \emptyset = \{\}$ (the empty set)
- Define $1 \equiv \{0\} = \{\emptyset\} = \{\{\}\}$
- **Define** $2 \equiv \{0, 1\} = \{\{\}, \{\{\}\}\}$
- Define $n + 1 \equiv n \cup \{n\}$ (successor function)
- Define natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$
 - Some books define $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$.
 - It is more common to define \mathbb{N} to start with 1.
- Thus, *n* is defined to be a set containing *n* elements.

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

- We have defined n to be a set containing n elements.
- Logicians first tried to define n as "the set of all sets containing n elements".
- The earlier definition possibly better captures our intuitive notion of what n "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

Natural numbers defined as above have the right order:

$$m \leq n \iff m \subseteq n$$

<u>*Note:*</u> we define " \leq " on natural numbers via " \subseteq " on sets.

Addition and multiplication of natural numbers:

- Still possible to define in terms of sets, but trickier.
- We'll defer this for later, after gaining more experience with rigorous mathematical concepts.
- If you can't wait, see this free e-book:

"Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/.

Informal introduction to construction of numbers (\mathbb{Z})

Integers:

- Need additive inverses for all natural numbers.
- Need to define \cdot , +, -, for all pairs of integers.
- Again, possible to define everything via set theory.
- Again, we'll defer this for later.

- For now, we'll assume we "know" what the naturals $\mathbb N$ and the integers $\mathbb Z$ "are".
- We can then *construct* the rationals \mathbb{Q} ...

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 2 Properties of ℝ Wednesday 9 January 2019

Where to find course information

- The course web site: http://www.math.mcmaster.ca/earn/3A03
- Click on Course information to download pdf file.
 Read it!!
- Check the course web site regularly!

What we did last class

- The "Reals" (ℝ) are all the numbers that are needed to fill in the "number line" (so it has no "gaps" or "holes").
- The rationals (\mathbb{Q}) have "holes", *e.g.*, $\sqrt{2}$.
- Numbers can be constructed using sets. We will discuss this informally. A more formal approach is taken in Math 4L03 (Mathematical Logic) or in this online e-book.
 - The naturals $(\mathbb{N} = \{1, 2, 3, ...\})$ can be constructed from \emptyset : $0 = \emptyset, \ 1 = \{0\}, \ 2 = \{0, 1\}, ..., \ n+1 = n \cup \{n\}.$
 - The integers (Z), and operations on them (+, -, ·), can also be constructed from sets and set operations (but we deferred that for later).
 - \blacksquare Given $\mathbb N$ and $\mathbb Z,$ we can construct $\mathbb Q.\,.\,.$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals:

• Idea: Associate \mathbb{Q} with $\mathbb{Z} \times \mathbb{N}$

• Use notation
$$\frac{a}{b} \in \mathbb{Q}$$
 if $(a, b) \in \mathbb{Z} \times \mathbb{N}$.

Define equivalence of rational numbers:

$$\frac{a}{b} = \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d = b \cdot c$$

Define order for rational numbers:

$$\frac{a}{b} \leq \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d \leq b \cdot c$$

Informal introduction to construction of numbers (\mathbb{O})

Rationals, continued:

Define operations on rational numbers:

$\frac{a}{b} + \frac{c}{d}$	def =	$\frac{ad + bc}{bd}$		
$\frac{a}{b} \cdot \frac{c}{d}$	def	$\frac{a \cdot c}{b \cdot d}$		

- Constructed in this way (ultimately from the empty set),
 Q satisfies all the standard properties we associate with the rational numbers.
- Formally, Q is a set of equivalence classes of Z × N. Extra Challenge Problem: Are "+" and "." well-defined on Q?

Properties of the rational numbers (\mathbb{Q})

Addition:

A1 Closed and commutative under addition. For any x, y ∈ Q there is a number x + y ∈ Q and x + y = y + x.
A2 Associative under addition. For any x, y, z ∈ Q the identity

$$(x+y)+z=x+(y+z)$$

is true.

A3 Existence and uniqueness of additive identity. There is a unique number $0 \in \mathbb{Q}$ such that, for all $x \in \mathbb{Q}$,

$$x + 0 = 0 + x = x.$$

A4 *Existence of additive inverses.* For any number $x \in \mathbb{Q}$ there is a corresponding number denoted by -x with the property that

$$x+(-x)=0.$$

Properties of the rational numbers (\mathbb{Q})

Multiplication:

- M1 Closed and commutative under multiplication. For any $x, y \in \mathbb{Q}$ there is a number $xy \in \mathbb{Q}$ and xy = yx.
- M2 Associative under multiplication. For any $x, y, z \in \mathbb{Q}$ the identity (xy)z = x(yz) is true.
- M3 Existence and uniqueness of multiplicative identity. There is a unique number $1 \in \mathbb{Q} \setminus \{0\}$ such that, for all $x \in \mathbb{Q}$, x1 = 1x = x.
- M4 *Existence of multiplicative inverses.* For any non-zero number $x \in \mathbb{Q}$ there is a corresponding number denoted by x^{-1} with the property that $xx^{-1} = 1$.

Properties of the rational numbers (\mathbb{Q})

Addition and multiplication together:

AM1 *Distributive law.* For any $x, y, z \in \mathbb{Q}$ the identity

$$(x+y)z = xz + yz$$

is true.

The 9 properties (A1–A4, M1–M4, AM1) make the rational numbers $\mathbb Q$ a field.

<u>Note</u>: M3 ensures $0 \neq 1$ to exclude the uninteresting case of a field with only one element.

Standard Mathematical Shorthand

Quantifiers		Logical operands		
\forall	for all	\wedge	logical and	
Ξ	there exists	\vee	logical or	
∄	there does not exist		logical not	
∃!	there exists a unique	$\underline{\vee}$	logical exclusive or	

Note:
$$A \leq B \equiv (A \lor B) \land (\neg A \lor \neg B)$$

Other shorthand

 $\begin{array}{cccc} \vdots & \mbox{therefore} & & \vdots & \mbox{because} \\ \end{array} \\ \begin{array}{cccc} \vdots & \mbox{such that} & & \Longleftrightarrow & \mbox{if and only if} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ccccc} \bullet & \mbox{equivalent} & & \Rightarrow \leftarrow & \mbox{contradiction} \end{array}$

The field axioms (in mathematical shorthand) for field ${\mathbb F}$

Addition axioms

A1 *Closed, commutative.*
$$\forall x, y \in \mathbb{F}, \exists (x+y) \in \mathbb{F} \land (x+y) = (y+x).$$

A2 Associative.
$$\forall x, y, z \in \mathbb{F}$$
,
 $(x + y) + z = x + (y + z)$.

A3 *Identity.*
$$\exists ! \ 0 \in \mathbb{F}$$
 $\Rightarrow \forall x \in \mathbb{F}, x + 0 = 0 + x = x.$

A4 Inverses.
$$\forall x \in \mathbb{F}, \exists (-x) \in \mathbb{F}$$

 $x + (-x) = 0.$

Multiplication axioms

- M1 Closed, commutative. $\forall x, y \in \mathbb{F}$, $\exists (xy) \in \mathbb{F} \land (xy) = (yx)$.
- M2 Associative. $\forall x, y, z \in \mathbb{F}$, (xy)z = x(yz).
- M3 *Identity.* $\exists ! 1 \in \mathbb{F} \setminus \{0\} + \forall x \in \mathbb{F}, x1 = 1x = x.$

Distribution axiom

AM1 Distribution. $\forall x, y, z \in \mathbb{F}$, (x + y)z = xz + yz.

Any collection \mathbb{F} of mathematical objects is called a *field* if it satisfies these 9 algebraic properties.

Examples of fields

Set	Field?	Why?
rationals (\mathbb{Q})	YES	
integers (\mathbb{Z})	NO	no multiplicative inverses
reals (\mathbb{R})	YES	
complexes (\mathbb{C})	YES	
integers modulo 3 (\mathbb{Z}_3)	YES	$2^{-1} = 2$

The integers modulo 3 (\mathbb{Z}_3)

Imagine a clock that repeats after 3 hours rather than 12 hours.

 \mathbb{Z}_3 contains the three elements $\{0,1,2\},$ with addition and multiplication defined as follows:

Ordered fields

A field \mathbb{F} is said to be **ordered** if the following properties hold:

Order axioms

- O1 For any $x, y \in \mathbb{F}$, exactly one of the statements x = y, x < yor y < x is true ("trichotomy"), *i.e.*, $\forall x, y \in \mathbb{F}, ((x = y) \land \neg (x < y) \land \neg (y < x)) \lor ((x \neq y) \land [(x < y) \lor (y < x)])$
- O2 For any $x, y, z \in \mathbb{F}$, if x < y is true and y < z is true, then x < z is true, *i.e.*, $\forall x, y, z \in \mathbb{F}$, $(x < y) \land (y < z) \implies (x < z)$
- O3 For any $x, y \in \mathbb{F}$, if x < y is true, then x + z < y + z is also true for any $z \in \mathbb{F}$, *i.e.*, $\forall x, y \in \mathbb{F}$, $(x < y) \implies x + z < y + z$, $\forall z \in \mathbb{F}$
- O4 For any $x, y, z \in \mathbb{F}$, if x < y is true and z > 0 is true, then xz < yz is also true,

i.e., $\forall x, y, z \in \mathbb{F}$, $(x < y) \land (0 < z) \implies (xz < yz)$

Examples of ordered fields

Field	Ordered?	Why?
rationals (\mathbb{Q})	YES	
reals (\mathbb{R})	YES	
integers modulo 3 (\mathbb{Z}_3)	NO	Next slide
complexes (\mathbb{C})	NO	
		Extra Challenge Problem: Prove the field \mathbb{C} cannot be ordered.

The field of integers modulo 3 cannot be ordered

Proposition

 \mathbb{Z}_3 is not an ordered field.

Proof.

<u>Approach</u>: proof by contradiction.

If \mathbb{Z}_3 is ordered, then O1 (trichotomy) implies that either 0<1 or 1<0 (and not both).

Food for thought: Is it possible for any finite field be ordered?

What other properties does \mathbb{R} have?

- $\blacksquare \mathbb{R}$ is an ordered field.
- **R** includes numbers that are not in \mathbb{Q} , *e.g.*, $\sqrt{2}$.
- What additional properties does \mathbb{R} have?
- Only one more property is required to fully characterize \mathbb{R} ... It is related to upper and lower bounds...

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 3 Properties of ℝ II Friday 11 January 2019

Announcements and comments arising from Lecture 2

- My office hours will be Mondays 1:30pm-2:20pm going forward. (Or by appointment.)
- Questions for next week's tutorials and some "Logic Notes" are posted on the Tutorials page of the course web site.
- Field Axiom M3 was corrected before posting slides for Lecture 2.
- No claim is being made that the field axioms as stated are absolutely minimal (*i.e.*, that there are no redundancies). In fact, we don't need to assume:
 - Identities are unique.
 - Inverses are unique.
 - Commutivity under addition (!).

Usually a slightly redundant set of axioms is stated to emphasize all the key properties.

An additional online resource

A sequence of 15 short (3–7 minute) videos covering the very basics of mathematical logic and theorem proving has been posted associated with a course at the University of Toronto:

Go to http://uoft.me/MAT137, click on the Videos tab and then on Playlist 1.

These videos go at a slower pace than we do, and may be very helpful to you to get your head around the idea of a rigorous mathematical proof.

More comments arising from Lecture 2

- The property that completes the specification of ℝ has to somehow fill in <u>all</u> the "holes" in ℚ.
- It is true that if x, y ∈ Q then ∃r ∈ R \ Q with x < r < y. But this property is <u>not</u> sufficient to characterize R, because it is satisfied by subsets of R.

Bounds

Definition (Upper Bound)

Let $E \subseteq \mathbb{R}$. A number *M* is said to be an **upper bound** for *E* if $x \leq M$ for all $x \in E$.

A set that has an upper bound is said to be **bounded above**.

Definition (Lower Bound)

Let $E \subseteq \mathbb{R}$. A number *m* is said to be a **lower bound** for *E* if $m \le x$ for all $x \in E$.

A set that has a lower bound is said to be **bounded below**.

A set that is bounded above and below is said to be **bounded**.

Maxima and Minima

Definition (Maximum)

Let $E \subseteq \mathbb{R}$. A number M is said to be **the maximum** of E if M is an **upper bound** for E and $M \in E$. If such an M exists we write $M = \max E$.

Definition (Minimum)

Let $E \subseteq \mathbb{R}$. A number *m* is said to be **the minimum** of *E* if *m* is a lower bound for *E* and $m \in E$. If such an *m* exists we write $m = \min E$.

We refer to "the" maximum and "the" minimum of E because there cannot be more than one of each. (*Proof?*)

Bounds, maxima and minima

Example					
Set	bounded below	bounded above	bounded	min	max
$\left[-1,1 ight]$	YES	YES	YES	-1	1
[-1, 1)	YES	YES	YES	-1	∄
$[-1,\infty)$	YES	NO	NO	-1	∄
$[-1,- frac14)\cup(frac12,1]$	YES	YES	YES	-1	1
\mathbb{N}	YES	NO	NO	1	∄
\mathbb{R}	NO	NO	NO	∄	∌
Ø	YES	YES	YES	∄	∌

Least upper bounds

Definition (Least Upper Bound/Supremum)

A number M is said to be the **least upper bound** or **supremum** of a set E if

- (i) M is an upper bound of E, and
- (ii) if \widetilde{M} is an upper bound of E then $M \leq \widetilde{M}$.

If M is the least upper bound of E then we write $M = \sup E$.

<u>Note</u>: We can refer to "the" least upper bound of E because there cannot be more than one. (Proof?)

What sets have least upper bounds?

Least upper bounds

Example		
Set	bounded above	sup
[-1, 1]	YES	1
[-1, 1)	YES	1
Ø	YES	∄
$\{x \in \mathbb{R} : x^2 < 2\}$	YES	$\sqrt{2}$
$\{x\in\mathbb{Q}:x^2<2\}$	YES	¢Q

Least upper bounds

The property that any set that is bounded above has a least upper bound is what distinguishes the real numbers \mathbb{R} from the rational numbers \mathbb{Q} .

Does this realization allow us to finish <u>constructing</u> \mathbb{R} ?

YES, but we will delay the construction until later in the course. For now, we will simply annoint the least upper bound property as an axiom:

Completeness Axiom

If $E \subseteq \mathbb{R}$, $E \neq \emptyset$, and E is bounded above, then E has a least upper bound (*i.e.*, sup E exists and sup $E \in \mathbb{R}$).

${\mathbb R}$ is a complete ordered field

- Any field IF that satisfies the order axioms and the completeness axiom is said to be a complete ordered field.
- \blacksquare \mathbb{R} is a complete ordered field.
- Are there any other complete ordered fields?
- Extra Challenge Problem: Prove that \mathbb{R} is the <u>only</u> complete ordered field.

Greatest lower bounds

Definition (Greatest Lower Bound/Infimum)

A number m is said to be the greatest lower bound or infimum of a set E if

- (i) m is a lower bound of E, and
- (ii) if \widetilde{m} is a lower bound of E then $\widetilde{m} \leq m$.

If *m* is the greatest lower bound of *E* then we write $m = \inf E$.

Greatest lower bounds

- The existence of least upper bounds was taken as an axiom.
- The existence of greatest lower bounds then follows.

Theorem

If $E \subseteq \mathbb{R}$, $E \neq \emptyset$, and E is bounded below, then E has a greatest lower bound (i.e., inf E exists and inf $E \in \mathbb{R}$).

Proof?

Idea of proof:

$L = \{\ell \in \mathbb{R} : \ell \text{ is a lower bound of } E\}$

Greatest lower bounds

Theorem

If $E \subseteq \mathbb{R}$, $E \neq \emptyset$, and E is bounded below, then E has a greatest lower bound (i.e., inf E exists and inf $E \in \mathbb{R}$).

Proof.

Recall graphical idea of proof.

Let $L = \{\ell \in \mathbb{R} : \ell \text{ is a lower bound of } E\}$. Then:

- $L \neq \emptyset$ (:: *E* is bounded below).
- *L* is bounded above ($:: x \in E \implies x$ an upper bound for *L*).
- \therefore L has a least upper bound, say $b = \sup L$.

Now show $b = \inf E$. First show $b \in L$ (*i.e.*, $x \in E \implies b \leq x$). Suppose $x \in E$ and $b \not\leq x$; then by O1 (trichotomy), we must have b > x. Now $b = \sup L$ and x < b, so x is not an upper bound of L, *i.e.*, there is some $\ell \in L$ such that $x < \ell$. But then ℓ is not a lower bound of E. $\Rightarrow \notin \therefore b \in L$ and b is also max L, *i.e.*, $b = \inf E$. \Box Comment on least upper bounds and greatest lower bounds

The proof above shows that:

inf $E = \sup\{x \in \mathbb{R} : x \text{ is a lower bound of } E\}$

Similarly:

 $\sup E = \inf \{ x \in \mathbb{R} : x \text{ is a upper bound of } E \}$

Some notational abuse concerning sup and inf

By convention, for convenience, we (and your textbook) sometimes write:

$\inf \mathbb{R}$	=	$-\infty$
$\sup \mathbb{R}$	=	∞
$\inf \varnothing$	=	∞
$\sup arnothing$	=	$-\infty$

This is an **abuse of notation**, since \emptyset and \mathbb{R} do not have least upper or greatest lower bounds in \mathbb{R} . ∞ is not a real number.

If you are asked "What is the least upper bound of \mathbb{R} ?" how should you answer? Correct answer: " \mathbb{R} is not bounded above so it does not have a least upper bound."

Consequences of the real number axioms (\S §1.7–1.9)

Theorem (Archimedean property)

The set of natural numbers \mathbb{N} has no upper bound.

Proof.

Suppose \mathbb{N} is bounded above. Then it has a least upper bound, say $B = \sup \mathbb{N}$. Thus, for all $n \in \mathbb{N}$, $n \leq B$. But if $n \in \mathbb{N}$ then $n+1 \in \mathbb{N}$, hence $n+1 \leq B$ for all $n \in \mathbb{N}$, *i.e.*, $n \leq B-1$ for all $n \in \mathbb{N}$. Thus, B - 1 is an upper bound for \mathbb{N} , contradicting B being the least upper bound.

Consequences of the real number axioms (\S §1.7–1.9)

Theorem (Equivalences of the Archimedean property)

- **1** The set of natural numbers \mathbb{N} has no upper bound.
- **2** Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x.

i.e., No matter how large a real number x is, there is always a natural number n that is larger.

3 Given any x > 0 and y > 0, there exists $n \in \mathbb{N}$ such that nx > y.

i.e., Given any positive number y, no matter how large, and any positive number x, no matter how small, one can add x to itself sufficiently many times so that the result exceeds y (i.e., nx > y for some $n \in \mathbb{N}$).

4 Given any x > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.

i.e., Given any positive number x, no matter how small, one can always find a fraction 1/n that is smaller than x.

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 4 Properties of ℝ III Monday 14 January 2019

Comments arising...

- Remember Assignment 1 is due this Friday @ 1:25pm in the appropriate locker.
- NOTE: Typos in question 4 have been corrected (there were missing brackets). Please download the revised question sheet for Assignment 1.
- Last time we ended with some equivalent conditions relating $\mathbb R$ and $\mathbb N$.

Consequences of the real number axioms (\S §1.7–1.9)

Theorem (Well-Ordering Property)

Every nonempty subset of \mathbb{N} has a smallest element.

Proof.

Let $S \subseteq \mathbb{N}$, $S \neq \emptyset$. Then S is a non-empty set of real numbers that is bounded below (for instance by 0), and hence has a greatest lower bound (in \mathbb{R}). Let $b = \inf S$. If $b \in S$ then $b = \min S$ and we are done.

Suppose $b \notin S$. Then $\exists n \in S$ such that n < b + 1 (otherwise b + 1 would be a lower bound for S that is greater than b) and, moreover, n > b (since $b \notin S$). $\therefore n \in S \cap (b, b + 1)$. But just as b + 1 cannot be a lower bound for S, n cannot be a lower bound for S (since it too would be a lower bound greater than $b = \inf S$). $\therefore \exists m \in S \cap (b, n)$. But we now have b < m < n < b + 1, which is impossible because m and n are both integers. $\Rightarrow \in$ Therefore $b \in S$, so $b = \min S$.

Consequences of the real number axioms (\S 1.7–1.9)

Corollary

Every nonempty subset of \mathbb{Z} that is bounded below (in \mathbb{R}) has a smallest element.

Proof.

The proof is identical to the proof of the well-ordering property for \mathbb{N} except that we start with a set of integers that is bounded below, rather than having to first identify a lower bound for the set.

Consequences of the real number axioms (\S §1.7–1.9)

Theorem (Principle of Mathematical Induction)

Let $S \subseteq \mathbb{N}$. Suppose that $1 \in S$ and, for every $n \in \mathbb{N}$, if $n \in S$ then $n + 1 \in S$. Then $S = \mathbb{N}$.

Proof.

Let $E = \mathbb{N} \setminus S$ and suppose $E \neq \emptyset$. Since $E \subset \mathbb{N}$ and $E \neq \emptyset$, the well-ordering property implies *E* has a smallest element, say *m*. Now $1 \in S$, so $1 \notin E$ and hence m > 1. But *m* is the least element of *E*, so the natural number $m - 1 \notin E$, and hence we must have $m - 1 \in S$. But then it follows that $(m - 1) + 1 = m \in S$, which is impossible because $m \in E$. $\Rightarrow \iff \therefore E = \emptyset$, *i.e.*, $S = \mathbb{N}$.

Consequences of the real number axioms (\S 1.7–1.9)

Definition (Dense Sets)

A set *E* of real numbers is said to be **dense** (or **dense in** \mathbb{R}) if every interval (a, b) contains a point of *E*.

Theorem (\mathbb{Q} is dense in \mathbb{R})

If $a, b \in \mathbb{R}$ and a < b then there is a rational number in the interval (a, b).

Corollary

Every real number can be approximated arbitrarily well by a rational number.

Given $x \in \mathbb{R}$, consider the interval $\left(x - \frac{1}{n}, x + \frac{1}{n}\right)$ for $n \in \mathbb{N}$.

The metric structure of \mathbb{R} (§1.10)

Definition (Absolute Value function)

For any $x \in \mathbb{R}$,

$$|x| \stackrel{\text{def}}{=} \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Theorem (Properties of the Absolute Value function)

For all $x, y \in \mathbb{R}$:

- $|| |x| \le x \le |x|.$
- 2 |xy| = |x| |y|.
- 3 $|x + y| \le |x| + |y|$.
- 4 $|x| |y| \le |x y|$.

The metric structure of \mathbb{R} (§1.10)

Definition (Distance function or metric)

The distance between two real numbers x and y is

$$d(x,y)=|x-y|.$$

Theorem (Properties of distance function or metric)

1 $d(x,y) \ge 0$ distances are positive or zero2 $d(x,y) = 0 \iff x = y$ distinct points have distance > 03d(x,y) = d(y,x)distance is symmetric4 $d(x,y) \le d(x,z) + d(z,y)$ the triangle inequality

<u>Note</u>: Any function satisfying these properties can be considered a "distance" or "metric".

The metric structure of \mathbb{R} (§1.10)

Given d(x, y) = |x - y|, the properties of the distance function are equivalent to:

Theorem (Metric properties of the absolute value function)

For all $x, y \in \mathbb{R}$:

1 $|x| \ge 0$

 $2 |x| = 0 \iff x = 0$

3 |x| = |-x|

4 $|x + y| \le |x| + |y|$ (the triangle inequality)

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 5 Properties of ℝ IV Wednesday 16 January 2019

- Archimedean theorem (N has no upper bound)
- \mathbb{N} is well-ordered (and an important corollary)
- Principle of Mathematical Induction
- Distance/metric definitions.

Plan for today's class

- A bit more about Distance/metrics.
- Prove that \mathbb{Q} is dense in \mathbb{R} .
 - Emphasizing explorations you might make in order to discover how to construct a proof.

Slick proof of the triangle inequality

Theorem (The Triangle Inequality)

 $|x+y| \leq |x|+|y|$ for all $x, y \in \mathbb{R}$.

Proof.

Let s = sign(x + y). Then

$$|x + y| = s(x + y) = sx + sy \le |x| + |y|$$
.

A non-standard metric on $\ensuremath{\mathbb{R}}$

Example (finite distance between every pair of real numbers)

Let

$$f(x)=\frac{|x|}{1+|x|},$$

and define

$$d(x,y)=f(x-y).$$

Prove that d(x, y) can be interpreted as a distance between x and y because it satisfies all the properties of a metric.

${\mathbb Q}$ is dense in ${\mathbb R}$

Theorem (\mathbb{Q} is dense in \mathbb{R})

If $a, b \in \mathbb{R}$ and a < b then there is a rational number in the interval (a, b).

(solution on board)

Note: In class, we developed the ideas for the proof in the way that you might proceed if you were trying to discover a proof from scratch. On the following slide, a "clean" proof is presented. This sort of proof is easy to follow, but some steps seem to be pulled out of nowhere. You are likely to be able to construct such a clean proof only after already working through the ideas in something like the way we did in class.

${\mathbb Q}$ is dense in ${\mathbb R}$

Theorem (\mathbb{Q} is dense in \mathbb{R})

If $a, b \in \mathbb{R}$ and a < b then there is a rational number in the interval (a, b).

Clean proof.

Given $a, b \in \mathbb{R}$ with a < b, use the archimedean theorem to choose $n \in \mathbb{N}$ such that $n > \frac{1}{b-a}$, which implies nb - na > 1 and hence na < nb - 1. If $nb - 1 \in \mathbb{Z}$ then let m = nb - 1 and note that na < m < nb, so $a < \frac{m}{n} < b$ as required. If $nb - 1 \notin \mathbb{Z}$, let $S = \{j \in \mathbb{Z} : j > nb - 1\}$ and by well-ordering let $m = \min S$. Now, since $m \in S$, we have m > nb - 1 and since m is the least element of S, we must have m - 1 < nb - 1 and hence m < nb. But na < nb - 1 by construction, so na < m < nb as required. \Box