Game values and (sur)real numbers

Jonathan Dushoff, McMaster University http://lalashan.mcmaster.ca/DushoffLab

McMaster Math 3A

December 2017

GOALS

- Describe:
 - ► Combinatoric games
 - Surreal numbers
 - ▶ Where the real numbers fit in
- Stay on this side of sanity

Game theory

- Classic game theory is the theory of games with imperfect information
- ▶ Why would that be?

Determinism

- Games with perfect information are boring
 - Mathematically, not practically
- Analyze the game tree; figure out who wins

Combinatorial game theory

- Except that deterministic games are not boring at all
- Conway decided to think about what it might mean to add two deterministic games together
- ► The result was the best thing

Resources

- On Numbers and Games, Conway
- Surreal Numbers, Knuth
- Winning Ways, Berlekamp, Conway, Guy

Review

- We define the real numbers by:
 - Building the integers as nested sets
 - Building the rationals as equivalence classes of ordered pairs of integers
 - Building the reals as cuts of the rationals
- ▶ A lot of work, also, we're left with three definitions of the number 3 (and 2 of the number 3/2)

Axiom 1: what is a game?

- A game is: a set of options for the Left player, and a set of options for the Right player
 - $\rightarrow x = (x^L \mid x^R)$
 - Options are previously defined games
- ▶ A game state is a game together with a specification of whose turn it is
- Motivation: Clearly define a wide range of deterministic games
 - ▶ in a way that's going to make it easy to add and subtract them
- Bonus: Highly inductive

Um, what?

- ▶ I have just defined a bewilderingly wonderful agglomeration of objects
 - We will need to "chop" it three times to get to the real numbers
- ▶ But is it clear that I've defined any objects at all?

What are some games?

► A set of options for the Left player, and a set of options for the Right player

- ► (0 |) ► 1
- **▶** (| 0)
 - **▶** -1
- **▶** (0 | 0)
 - *****

How to play a game?

- ▶ If it's your turn, you choose an option
- ▶ It's then the other player's turn in that game
- ▶ If you have no options than you lose

Hackenbush

- Uses a drawing with blue, red and green lines, and a "ground"
- On your turn, you remove a line
 - Lines no longer connected to ground are removed
- bLue lines can be removed by Left
- Red lines can be removed by Right
- greeN lines can be removed by aNyone

What outcomes can a game have?

- $\mathcal{O}(0) = S$ second player wins
- $\mathcal{O}(*) = F$ first player wins
- ▶ $\mathcal{O}(1) = L$ Left player wins
- ▶ $\mathcal{O}(-1) = R$ Right player wins

Axiom 2: Adding games

- ▶ To play in the game A + B, you move *either* in A or in B
 - $A + B = (A + B^L, A^L + B \mid A + B^R, A^R + B)$
- This is perfectly well defined, and beautifully inductive
 - ► All games are defined in terms of previously defined games
- Motivation: related to thinking about certain kinds of specific games
 - Also, turns out to be super-cool

Examples

- ▶ What happens if we add games with various outcomes?
 - ► *S* + *S* = *S*
 - ► *F* + *F* =?
 - L+L=L
 - ▶ L + R = ?
 - ► *L* + *F* =?

Some games are better

- ▶ We say $A \le B$ if B is at least as good for the Left player as A
- Motivation:
 - classify games by their potential additive effects
 - put a (partial) ordering on the games

Definition

- ▶ The **negative** of a game reverses the roles of Left and Right
- ▶ This has a nice, recursive definition

$$A = (A^L \mid A^R)$$

$$-A \equiv (-A^R \mid -A^L)$$

▶ We then evaluate A : B by looking at the outcome of $A - B \equiv A + (-B)$

At least as good

- ➤ A is at least as good as B (for Left) if A B has no good moves (for Right)
 - ▶ This means $\mathcal{O}(A B) =$
 - ▶ L, or S

Mirror world

▶ It is sometimes useful to construct *A* − *B* by imagining a mirror, and putting *B* on the opposite side of the mirror (Left and Right are reversed there)

Axiom 3: Partial ordering

- ▶ We say position A B is good for Left, *unless*
 - ► Right has a good move
- We say $A \ge B$ unless
 - ▶ Some $A^R \leq B$, or
 - ▶ Some $B^L \ge A$

Partial ordering

- \triangleright $\mathcal{O}(A-B)$?
 - $ightharpoonup L \implies A > B$
 - $ightharpoonup R \implies A < B$
 - \triangleright S \Longrightarrow A = B
 - ▶ F \implies $A \sim B$

Theorem

▶ If
$$A = B$$
, then:

$$\forall X, \mathcal{O}(X+A) = \mathcal{O}(X+B)$$

$$\triangleright$$
 $\mathcal{O}(X+A)$

$$\blacktriangleright = \mathcal{O}((X+A)+(B-A))$$

$$\blacktriangleright = \mathcal{O}((X+B)+(A-A))$$

$$ightharpoonup = \mathcal{O}(X+B)$$

Values

- We can thus define a game value as an equivalence class of games
 - ▶ A set of games that are linked by an equivalence relation
 - ▶ The rational numbers were defined last week in a similar way:
 - ▶ 1/2 is the equivalence class of ordered pairs (1, 2); (2, 4); ...

Numbers

- ► The values I've defined are a very cool group.
- But not very numerical:

► Games have "numerical" value if you can count free moves, which works when moving is always bad.

Axiom 1N: what is a (surreal) number?

- Recall: a game is: a set of options for the Left player, and a set of options for the Right player
 - $\rightarrow x = (x^L \mid x^R)$
 - Options are previously defined games
- ► A number is: a set of options for the Left player, and a set of options for the Right player
 - $\rightarrow x = (x^L \mid x^R)$, s.t. no $x^L \ge x^R$
 - Options are previously defined numbers

Examples

- 1 + 1 = 2
- **▶** (0|1)
- **▶** (0|2)
- **▶** (0|3)

Simplicity theorem

- ▶ The value of $(x^L \mid x^R)$ is the simplest, non-prohibited value
- ▶ Prohibited: if if is larger than some x^R or less than some x^L
- Simplest: earliest created; it has no options that are not prohibited
 - ... or else those would be simpler, non-prohibited values

Integers

• We create the integers as n + 1 = (n|)

Binary fractions

- We create the (fractional) dyadic rationals as
 - $(2k+1)/2^{n+1} = (k/2^n \mid (k+1)/2^n)$
 - e.g., $7/16 = (3/8 \mid 1/2)$
- ► This is also how we *define* the dyadic rationals: integers divided by powers of two.

The limit

- What happens if we take the limit of all numbers we can make in a finite number of steps?
- ▶ We can get all the reals . . .

• e.g.,
$$1/3 = (0, 1/4, 5/16, \dots | 1, 1/2, 3/8, \dots)$$

- plus some very weird stuff
 - $\omega = (0, 1, 2, \dots \mid)$
 - $1/\omega = (0|1, 1/2, 1/4, \dots)$

0.999...

- ▶ Is 0.999... really equal to 1?
- Depends on your definitions
- ▶ What is 0.1111...(base 2) as a game?

Ordinals

You can take as many limits as you want, and get all of the infinite ordinals, and a wide range of infinitesimals

Finitude

- ▶ Any game takes a *finite* number of moves to play
 - ► Induction: if I have a new game, and play it, it will take one more move than the option I chose
- ▶ This number is not necessarily bounded. Given a game that does not correspond to a dyadic number, it is possible to take more than N moves in it, $\forall N$.

Axiom 1R: what is a (real) number?

- Recall: a number is: a set of options for the Left player, and a set of options for the Right player
 - $x = (x^L \mid x^R)$, s.t.:
 - ▶ no $x^L \ge x^R$
 - Options are previously defined numbers
- ► A real number is: a set of options for the Left player, and a set of options for the Right player
 - $x = (x^L \mid x^R)$, s.t.:
 - ightharpoonup no $x^L > x^R$
 - \triangleright x^L has a largest element iff x^R has a smallest element
 - Options are previously defined real numbers

Axiom 4

- ▶ You can define multiplication
 - Motivation: $(x x^S)(y y^S)$ has a known sign

Theorem

- You can construct division and show that the surreal numbers are a field
 - Insane induction that only a genius could come up with, seriously
 - ► Induction simultaneously on simpler quotients, and on the quotient itself

Surreal arithmetic

- $\triangleright \omega 1$,
- $\blacktriangleright \omega/2, \sqrt(\omega)$
- Even crazier stuff: $\sqrt[3]{\omega 1} \pi/\omega$

Micro-infinitesimals

▶ If we allow values that aren't numbers, we have infinitesimals that are smaller than the smallest infinitesimal numbers

Nimbers

- We can define neutral games by identifying options for Left and Right
- ► This is the theory of Nim values

Hot games

Hot games are games where there can be a positive value to moving

Example: domineering

Conclusion

- We can define a bewildering array of games with a simple, recursive definition
- By defining addition, we can chop these into values, which form a group under sensible game addition
- ▶ By recursively requiring making a move to have a cost, we can chop these further into numbers, which contain the reals, the infinite ordinals and a consistent set of infitesimals
 - These surreal numbers form a field
- Game values are the best thing

Resources

- On Numbers and Games, Conway
- Surreal Numbers, Knuth
- Winning Ways, Berlekamp, Conway, Guy