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Limits of Functions

We know from calculus that it can be useful to represent functions
as limits of other functions.

Example

The power series expansion

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

expresses the exponential ex as a certain limit of the functions

1, 1+
x

1!
, 1+

x

1!
+
x2

2!
, 1+

x

1!
+
x2

2!
+
x3

3!
, · · ·

Our goal is to give meaning to the phrase “limit of functions”, and
discuss how functions behave under limits.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise Convergence

There are multiple inequivalent ways to define the limit of a
sequence of functions.

∴ There are multiple different notions of what it means for a
sequence of functions to converge.

Some convergence notions are better behaved than others.

We will begin with the simplest notion of convergence.

Definition (Pointwise Convergence)

Suppose {fn} is a sequence of functions defined on a domain
D ⊆ R, and let f be another function defined on D. Then {fn}
converges pointwise on D to f if, for every x ∈ D, the sequence
{fn(x)} of real numbers converges to f (x).

Unfortunately, pointwise convergence does not preserve many
useful properties of functions.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise Convergence

Example

fn(x) =

{
xn 0 ≤ x ≤ 1,

1 x ≥ 1.
lim
n→∞

fn(x) =

{
0 0 ≤ x < 1

1 x ≥ 1

Limit of sequence (of
continuous functions) is
not continuous.

By smoothing the corner
at x = 1, we get a
sequence of differentiable
functions that converge
to a function that is not
even continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise Convergence

Example

Define fn(x) on [0, 1] as follows:

fn(x) =


2n2x , 0 ≤ x ≤ 1

2n

2n − 2n2x , 1
2n ≤ x ≤ 1

n

0, x ≥ 1
n .

f1
f2

f4

f8

lim
n→∞

fn(x) = 0 ∀ x

∫ 1

0
fn =

1

2
∀ n ∈ N

∫ 1

0
lim
n→∞

fn = 0

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

A much better behaved notion of convergence is the following.

Definition (fn → f uniformly)

Suppose {fn} is a sequence of functions defined on a domain
D ⊆ R, and let f be another function defined on D. Then {fn}
converges uniformly on D to f if, for every ε > 0, there is some
N ∈ N so that, for all x ∈ D,

n ≥ N =⇒ |fn(x)− f (x)| < ε.

Note that {fn} converges uniformly to f if and only if ∀ε > 0,
∃N ∈ N such that

n ≥ N =⇒ supx∈D |fn(x)− f (x)| < ε.

uniform convergence
=⇒
6⇐=

pointwise convergence

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

The following theorems illustrate the sense in which uniform
convergence is better behaved than pointwise convergence in
relation to common constructions in analysis.

Theorem (Integrability and Uniform Convergence)

Suppose {fn} is a sequence of functions that converges uniformly
on [a, b] to f . If each fn is integrable on [a, b], then f is integrable
and ∫ b

a
f = lim

n→∞

∫ b

a
fn .

(Textbook (TBB) §9.5.2, p. 571ff)

The proof that f is integrable is rather involved. We will skip it.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

Proof that
∫ b
a f = limn→∞

∫ b
a fn given that f is integrable.

Given that f is integrable, to prove the equality, we will show that
for each ε > 0, there is some N ∈ N so that∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣ < ε for all n ≥ N.

For any n ∈ N, we have∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣ ≤ ∫ b

a
|f − fn| ≤ sup

x∈[a,b]
|f (x)− fn(x)| (b − a) .

Since fn converges uniformly to f , there is some N ∈ N so that
supx∈[a,b] |f (x)− fn(x)| < ε/(b − a) for all n ≥ N. For such n,

we have
∣∣∣∫ b

a f −
∫ b
a fn

∣∣∣ < ε, as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Please consider. . .

5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey2/index.php/893454

Please complete this anonymous survey to help us
monitor the patterns of respiratory illness,
over-the-counter drug use, and social contact within the
McMaster community. There are no risks to filling out
this survey, and your participation is voluntary. You do
not need to answer any questions that make you
uncomfortable, and all information provided will be kept
strictly confidential. Thanks for participating.

–Dr. Marek Smieja (Infectious Diseases)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://surveys.mcmaster.ca/limesurvey2/index.php/893454
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Last time. . .

Convergence of sequences of functions:

Pointwise convergence

Uniform convergence

Stated and proved theorem about integrability and uniform
convergence

Stated theorem about continuity and uniform convergence

We will prove it today.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Sequences of Functions II 13/43

Uniform Convergence

Theorem (Continuity and Uniform Convergence)

Suppose {fn} is a sequence of functions that converges uniformly on [a, b]
to f . If each fn is continuous on [a, b], then f is continuous on [a, b].

Proof.

Fix x ∈ [a, b] and ε > 0. We must show ∃δ > 0 such that if y ∈ [a, b]
and |y − x | < δ then |f (y)− f (x)| < ε.

Since the fn uniformly converge to f , there is some N ∈ N so that
|fN(y)− f (y)| < ε

3 for all y ∈ [a, b]. Fix such an N.

Since fN is continuous, there is some δ > 0 so that if y ∈ [a, b] satisfies
|y − x | < δ, then |fN(y)− fN(x)| < ε

3 . For such y , we then have

|f (y)− f (x)| = |f (y)− fN(y) + fN(y)− fN(x) + fN(x)− f (x)|
≤ |f (y)− fN(y)|+ |fN(y)− fN(x)|+ |fN(x)− f (x)|
< ε

3 + ε
3 + ε

3 = ε,
as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

The interaction between uniform convergence and differentiability
is more subtle.

Theorem (Differentiability and Uniform Convergence)

Suppose {fn} is a sequence of differentiable functions on [a, b]
such that

1 f ′n is continuous for each n,

2 the sequence {f ′n} converges uniformly on [a, b],

3 the sequence {fn} converges pointwise to a function f .

Then f is differentiable and {f ′n} converges uniformly to f ′.

(Textbook (TBB) §9.6, p. 578ff)

Note: If we weaken the first condition to f ′n being integrable, but
explicitly require in the second condition that the uniform limit is
continuous, then the theorem is still true and no more difficult to prove.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Real Numbers

Suppose {xn} is a sequence of real numbers. Recall that the
sequence of partial sums is the sequence {sn} defined by

sn =
n∑

k=1

xn .

If the sequence of partial sums converges, then we write the limit as

∞∑
k=1

xk = lim
n→∞

n∑
k=1

xn = lim
n→∞

sn .

In this case, we call
∑∞

k=1 xk a convergent series. A divergent
series is a sequence of partial sums that diverges; we sometimes
abuse notation and write

∑∞
k=1 xk for divergent series as well.

A series is either a convergent series or a divergent series.

Our goal now is to extend this to sequences of functions.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

Suppose {fn} is a sequence of functions defined on a set D ⊆ R.
The sequence of partial sums is the sequence {Sn} where Sn is
the function defined on D by

Sn(x) =
n∑

k=1

fk(x) .

When talking about limits of the Sn, we will write
∑∞

k=1 fk and
refer to this as a series.

Keep in mind that this is very informal, since the terminology does
not specify any sense in which the Sn converge, nor does it assume
that the Sn converge at all!

We will now make this more formal.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

Suppose {fn} is a sequence of functions defined on a domain D,
and {Sn} is its sequence of partial sums.

Definition (Convergence of Series)

If the sequence of partial sums {Sn} converges pointwise on D to a
function f , then we say that the series

∑∞
k=1 fk converges

pointwise on D to f .

If the {Sn} converge uniformly on D to a function f , then we say
that the series

∑∞
k=1 fk converges uniformly on D to f .

In both cases, we will write f =
∑∞

k=1 fk to denote that the series
converges to f .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

The theorems on convergence of sequences of integrable,
continuous and differentiable functions have several immediate
implications for series of functions.

In the following, we assume that {fn} is a sequence of functions
defined on an interval [a, b].

Corollary (Integrals of Series)

Suppose the fn are integrable and
∑∞

k=1 fk converges uniformly to
a function f . Then f is integrable and∫ b

a
f =

∞∑
k=1

∫ b

a
fk .

Instructor: David Earn Mathematics 3A03 Real Analysis I



Sequences of Functions II Series of Functions 19/43

Series of Functions

Corollary (Continuity of Series)

Suppose the fn are continuous and
∑∞

k=1 fk converges uniformly to
a function f . Then f is continuous.

Corollary (Differentiability of Series)

Suppose {fn} is a sequence of differentiable functions on [a, b]
such that

f ′n is continuous for each n,

the series
∑∞

k=1 f
′
k converges uniformly on [a, b],

the series
∑∞

k=1 fk converges pointwise to a function f .

Then f is differentiable and f ′ =
∑∞

k=1 f
′
k .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence

We have just seen that several useful conclusions can be drawn
when a series converges uniformly. The following gives a practical
way of proving uniform convergence.

Theorem (Weierstrass M-test)

Let {fn} be a sequence of functions defined on D ⊆ R, and
suppose {Mn} is a sequence of real numbers such that

|fn(x)| ≤ Mn, ∀x ∈ D, ∀n ∈ N.

If
∑

n Mn converges, then
∑∞

k=1 fk converges uniformly.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence

Approach to proving the Weierstrass M-test:

Let Sn =
∑n

k=1 fk be the nth partial sum.

Show that for every ε > 0, there is some N ∈ N so that

sup
x∈D
|Sn(x)− Sm(x)| < ε , ∀n,m ≥ N.

This condition is called the uniform Cauchy criterion.

Prove that the uniform Cauchy criterion implies uniform
convergence.

This part is an excellent exercise for you.

Note: The proof is similar to the proof of the Cauchy criterion
for real numbers that we encountered earlier this term.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Sequences of Functions II Series of Functions 22/43

Proving Uniform Convergence

Proof of the Weierstrass M-test.

Let ε > 0. Suppose the series
∑

Mn converges. By the Cauchy
criterion for real numbers, there is some integer N so that∣∣∣∣∣

n∑
k=1

Mk −
m∑

k=1

Mk

∣∣∣∣∣ < ε , ∀n,m ≥ N.

Without loss of generality, we can assume m < n, so the above can
be written

Mm+1 + Mm+2 + · · ·+ Mn < ε.

Note that we have Sn − Sm = fm+1 + fm+2 + · · ·+ fn, so the
assumption that |fk | ≤ Mk gives, for all x ∈ D,

|Sn(x)− Sm(x)| ≤ Mm+1 + Mm+2 + · · ·+ Mn < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence

Example

Let p > 1, and consider the series
∞∑
k=1

sin(kx)

kp
.

This satisfies

∣∣∣∣sin(kx)

kp

∣∣∣∣ ≤ 1

kp
for all x ∈ R.

Since the series
∞∑
k=1

1

kp
converges, it follows from the Weierstrass

M-test that the series
∑∞

k=1
sin(kx)

kp converges uniformly.

Hence it is a continuous function.

In fact, if p > 2 then the series
∑∞

k=1
sin(kx)

kp is differentiable:

Let fk(x) = sin(kx)
kp . The f ′k are continuous and another application

of the Weierstrass M-test shows that
∑∞

k=1 f
′
k converges uniformly.

Hence the series is differentiable and the derivative is
∑∞

k=1 f
′
k .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Please consider. . .

5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey2/index.php/893454

Please complete this anonymous survey to help us
monitor the patterns of respiratory illness,
over-the-counter drug use, and social contact within the
McMaster community. There are no risks to filling out
this survey, and your participation is voluntary. You do
not need to answer any questions that make you
uncomfortable, and all information provided will be kept
strictly confidential. Thanks for participating.

–Dr. Marek Smieja (Infectious Diseases)

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://surveys.mcmaster.ca/limesurvey2/index.php/893454
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Announcements

Solutions to Test 2 have been posted.
They were revised slightly on Wednesday night (10pm).

Assignment 6 was slightly revised at 1:05pm yesterday.
“0 < b” should have said “b < 0.”

Putnam Competition is tomorrow at 10:00am in BSB-B155.

Last time:

Continuity and uniform convergence

Differentiability and uniform convergence

Convergence of series

Theorems about uniform convergence of series of functions

Weierstrass M-test

Example

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Suppose {an} is a sequence of real numbers.

Definition (Power Series)

A power series (centred at 0) is a series of the form

∞∑
k=0

akx
k .

More generally, a power series centred at c has the form

∞∑
k=0

ak(x − c)k .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Corollary (Convergence of Power Series)

Suppose that the series f (x0) =
∑∞

k=0 akx
k
0 converges for some

x0 > 0, and 0 < a < x0. Then on [−a, a], the series

f (x) =
∞∑
k=0

akx
k

converges uniformly. Moreover, f is continuous and∫ d

c
f =

∞∑
k=0

ak

∫ d

c
xk ∀c , d ∈ [−a, a].

Finally, f is differentiable and
∑∞

k=1 kakx
k−1 converges uniformly

on [−a, a] to f ′.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Sketch of proof of convergence of power series f (x) =
∑∞

k=0 akx
k

on [−a, a]

Weierstrass M-test with Mk = akx
k
0

=⇒ uniform convergence to f .

Uniform convergence to f =⇒ f is continuous and∫ d

c
f =

∞∑
k=0

ak

∫ d

c
xk .

That the derivative
∑∞

k=1 kakx
k−1 converges uniformly on

[−a, a] can be proved via the ratio test (Textbook (TBB) Theorem

3.28) or the root test (Textbook (TBB) Theorem 3.30), which we
have not formally discussed.

Uniform convergence of the derivative series
=⇒ uniform limit f is differentiable.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Example

Consider the series
∑∞

k=0 x
k . If 0 < x0 < 1, then the series∑∞

k=0 x
k
0 converges. Consequently, for any 0 < a < 1, the series∑∞

k=0 x
k converges uniformly on [−a, a] to a differentiable

function. In fact, the function it converges to is 1/(1− x). The
derivative is

1

(1− x)2
=
∞∑
k=1

kxk−1,

and the integral (from 0 to x) is

− log(1− x) =
∞∑
k=0

xk+1

k + 1
.

These are all valid for x ∈ (−1, 1).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?

Let f0(x) = the distance from x to the nearest integer.

1
2

-3 -2 -1 0 1 2 3

f0(x)

Let fn(x) =
1

2n
f0(2nx).

1
4

-1 0 1

f1(x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?

1
8

-1 0 1

f2(x)

1
16

-1 0 1

f3(x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?

Now define Sn(x) =
n∑

k=1

fn(x).

1
2

-1 0 1

S1(x)

1
2

-1 0 1

S2(x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?

1
2

-1 0 1

S3(x)

1
2

-1 0 1

S4(x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?

1
2

-1 0 1

S8(x)

1
2

-1 0 1

S16(x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?

Now consider:

Each fn is continuous, so each Sn =
∑n

k=1 fn is continuous.

|fn(x)| ≤ 1

2n
∀x ∈ R.

∞∑
n=1

1

2n
converges.

∴ Weierstrass M-test =⇒
∞∑
k=1

fn converges uniformly.

∴ The uniform limit, say f , is continuous.

Is f uniformly continuous?

Is f differentiable?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?

Extra Challenge Problem:
Prove that the uniform limit function,

f =
∞∑
k=1

fn ,

which is continuous on R, is in fact

1 uniformly continuous

2 differentiable nowhere

Note: Proving uniform continuity should be really really easy.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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What exactly is R ?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Construction of the Real Numbers

Recall that we defined the natural numbers N as sets:
0 ≡ ∅, 1 ≡ {0}, 2 ≡ {0, 1}, etc.

For m, n ∈ N we defined m < n to mean m ⊂ n.

We defined the rational numbers Q to be ordered pairs of
integers (more precisely, Q is a set of equivalence classes of
Z× N).

In the same spirit, we can define real numbers not by
determining what they “really are” but instead by settling for
a definition that determines their mathematical properties
completely.

So, just as Z can be built from N, and Q can be built from Z,
we can build R from Q.

Richard Dedekind’s idea was to construct a real number α as a
set of rational numbers, in a way that naturally yields the one
property of R that Q does not have: least upper bounds. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://en.wikipedia.org/wiki/Equivalence_class
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Construction of the Real Numbers

Dedekind’s stroke of genius (on 24 Nov 1858) was to define α as “the set
of rational numbers less than α” in a way that is not circular.

Definition (Real number)

A real number is a set α ⊆ Q, with the following four properties:

1 ∀ x ∈ α, if y ∈ Q and y < x , then y ∈ α;

2 α 6= ∅;

3 α 6= Q;

4 there is no greatest element in α,
i.e., if x ∈ α then ∃ y ∈ α such that y > x .

The set of all real numbers is denoted by R.

Historical note: Dedekind originally defined a real number α as the pair
of sets (L,R) where L is the set of rationals < α and R is the set of
rationals ≥ α. A real number is then described as a Dedekind cut.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Construction of the Real Numbers

Example:
√

2 = {q ∈ Q : q2 < 2 or q < 0}.

With real numbers defined, we can easily define an ordering on R.

Definition (Order of real numbers)

If α, β ∈ R then α < β iff α ⊂ β. (Similarly for >, ≤, and ≥.)

We now have enough to prove:

Theorem

If A ⊂ R, A 6= ∅, and A is bounded above, then A has a least
upper bound.

We also need to define +, ·, 1 and α−1.

Then we can prove that R is a complete ordered field and,
moreover, it is the unique such field (up to isomorphism).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Course Evaluations

Please complete the course evaluation for

Math 3A03:

https://evals.mcmaster.ca

Course Evaluations FAQ:
https://evals.mcmaster.ca/login.php#faq

Percentage of students who have completed the course
evaluation:
https:

//evals.mcmaster.ca/fac_stat.php?fac=SCIENCE

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://evals.mcmaster.ca
https://evals.mcmaster.ca/login.php#faq
https://evals.mcmaster.ca/fac_stat.php?fac=SCIENCE
https://evals.mcmaster.ca/fac_stat.php?fac=SCIENCE
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Next time. . .
An alternative construction of R. . .

And much much more. . .

Surreal numbers. . .
. . . Guest lecture by Dr. Jonathan Dushoff

Instructor: David Earn Mathematics 3A03 Real Analysis I


