25 Differentiation

26 Differentiation II

Differentiation

McMaster University

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 25
Differentiation
Wednesday 8 November 2017

Announcements

- Assignment 5 has been posted on the course wiki. The assignment is due on Monday 20 Nov 2017 at 2:25pm (remember cover sheet!)

The Derivative

The Derivative

Definition (Derivative)

Let f be defined on an interval I and let $x_{0} \in I$. The derivative of f at x_{0}, denoted by $f^{\prime}\left(x_{0}\right)$, is defined as

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

provided either that this limit exists or is infinite. If $f^{\prime}\left(x_{0}\right)$ is finite we say that f is differentiable at x_{0}. If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a differentiable function.

Note: "Differentiable" and "a derivative exists" always mean that the derivative is finite.

The Derivative

Example

$f(x)=x^{2}$. Find $f^{\prime}(2)$.

$$
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2}=\lim _{x \rightarrow 2} x+2=4
$$

Note:

- In the first two limits, we must have $x \neq 2$.
- But in the third limit, we just plug in $x=2$.
- Two things are equal, but in one $x \neq 2$ and in the other $x=2$.
- Good illustration of why it is important to define the meaning of limits rigorously.

The Derivative

Example

Let f be defined in a neighbourhood I of 0 , and suppose $|f(x)| \leq x^{2}$ for all $x \in I$. Is f necessarily differentiable at 0 ? e.g.,

(solution on board)

The Derivative

Definition (One-sided derivatives)

Let f be defined on an interval I and let $x_{0} \in I$. The right-hand derivative of f at x_{0}, denoted by $f_{+}^{\prime}\left(x_{0}\right)$, is the limit

$$
f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

provided either that this one-sided limit exists or is infinite.
Similarly, the left-hand derivative of f at x_{0}, denoted by $f_{-}^{\prime}\left(x_{0}\right)$, is the limit

$$
f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Note:
If $x_{0} \in I^{\circ}$ then f is differentiable at x_{0} iff $f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right) \neq \pm \infty$.

The Derivative

Example

$$
f(x)= \begin{cases}x-1, & x<0 \\ 0, & x=0 \\ x+1, & x>0\end{cases}
$$

- Same slope from left and right. Why isn't f differentiable???
- $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0} f^{\prime}(x)=1$.
- $f_{-}^{\prime}(0)=f_{+}^{\prime}(0)=f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\infty$.

The Derivative

■ Higher derivatives: we write

- $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ if f^{\prime} is differentiable;
- $f^{(n+1)}=\left(f^{(n)}\right)^{\prime}$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$
\begin{aligned}
\frac{d f}{d x} & =f^{\prime}(x) \\
D & =\frac{d}{d x} \\
D^{n} f(x) & =\frac{d^{n} f}{d x}=f^{(n)}(x)
\end{aligned}
$$

The Derivative

Theorem (Differentiable \Longrightarrow continuous)

If f is defined in a neighbourhood I of x_{0} and f is differentiable at x_{0} then f is continuous at x_{0}.

Proof.

Must show $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$, i.e., $\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right)=0$.

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right) & =\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \times\left(x-x_{0}\right)\right) \\
& =\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right) \times \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \\
& =f^{\prime}\left(x_{0}\right) \times 0=0
\end{aligned}
$$

where we have used the theorem on the algebra of limits.

The Derivative

Theorem (Algebra of derivatives)

Supppose f and g are defined on an interval I and $x_{0} \in I$. If f and g are differentiable at x_{0} then $f+g$ and $f g$ are differentiable at x_{0}. If, in addition, $g\left(x_{0}\right) \neq 0$ then f / g is differentiable at x_{0}. Under these conditions:
$1(c f)^{\prime}\left(x_{0}\right)=c f^{\prime}\left(x_{0}\right)$ for all $c \in \mathbb{R}$;
$2(f+g)^{\prime}\left(x_{0}\right)=\left(f^{\prime}+g^{\prime}\right)\left(x_{0}\right)$;
$3(f g)^{\prime}\left(x_{0}\right)=\left(f^{\prime} g+f g^{\prime}\right)\left(x_{0}\right)$;
$4\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\left(\frac{g f^{\prime}-f g^{\prime}}{g^{2}}\right)\left(x_{0}\right) \quad\left(g\left(x_{0}\right) \neq 0\right)$.

[^0]
The Derivative

Theorem (Chain rule)

Suppose f is defined in a neighbourhood U of x_{0} and g is defined in a neighbourhood V of $f\left(x_{0}\right)$ such that $f(U) \subseteq V$. If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$ then the composite function $h=g \circ f$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right) .
$$

(Textbook (TBB) §7.3.2)
TBB provide a very good motivating discussion of this proof, which is quite technical.

The Derivative

Theorem (Derivative at local extrema)

Let $f:(a, b) \rightarrow \mathbb{R}$. If x is a maximum or minimum point of f in (a, b), and f is differentiable at x, then $f^{\prime}(x)=0$.
(Textbook (TBB) Theorem 7.18, p. 424)
Note: f need not be differentiable or even continuous at other points.

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 26
Differentiation II
Friday 10 November 2017

Announcements

- Assignment 5 has been posted on the course wiki. The assignment is due on Monday 20 Nov 2017 at 2:25pm (remember cover sheet!)

Survey results

Table 14: The status quo is that there are two lecture sections in which the two instructors deliver the same material simultaneously, and four tutorial sections that are designed and led by the two TAs (who present problems at the blackboard). Which of the following options would you prefer for the remainder of the course?

P01	Preference	n	percent
1	Maintain the status quo	46	57.50
2	Maintain the status quo for lectures, but run tutorials	15	18.80
	in a different style where students work on problems in groups and the TA circulates giving advice on constructing proofs		
3	Have everyone attend the same lecture section (with the two instructors alternating topics) but instructors and	7	8.75
	TAs co-design and co-run tutorials in a more "group work" fashion		
4	NA's	12	15.00

Last time. . .

■ Definition of the derivative.
■ Proved differentiable \Longrightarrow continuous.
■ Discussed algebra of derivatives and chain rule.
■ Proved derivative is zero at extrema.
■ Defined one-sided derivatives

- Example

The Mean Value Theorem

Theorem (Rolle's theorem)

If f is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then there exists $x \in(a, b)$ such that $f^{\prime}(x)=0$.
(solution on board)
(Textbook (TBB) Theorem 7.19, p. 427)

Theorem (Mean value theorem)

If f is continuous on $[a, b]$ and differentiable on (a, b) then there exists $x \in(a, b)$ such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

The Mean Value Theorem

Idea for proof:

Proof.

Apply Rolle's theorem to

$$
h(x)=f(x)-\left[f(a)+\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)\right]
$$

The Mean Value Theorem

Example

$f^{\prime}(x)>0$ on an interval $I \Longrightarrow f$ strictly increasing on I.
Proof:
Suppose $x_{1}, x_{2} \in I$ and $x_{1}<x_{2}$. We must show $f\left(x_{1}\right)<f\left(x_{2}\right)$.
Since $f^{\prime}(x)$ exists for all $x \in I, f$ is certainly differentiable on the closed subinterval $\left[x_{1}, x_{2}\right]$.

Hence by the Mean Value Theorem $\exists x_{*} \in\left(x_{1}, x_{2}\right)$ such that

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(x_{*}\right)
$$

But $x_{2}-x_{1}>0$ and since $x_{*} \in I$, we know $f^{\prime}\left(x_{*}\right)>0$.
$\therefore f\left(x_{2}\right)-f\left(x_{1}\right)>0, \quad$ i.e., $f\left(x_{1}\right)<f\left(x_{2}\right)$.

Intermediate value property for derivatives

Theorem (Darboux's Theorem: IVP for derivatives)

If f is differentiable on an interval I then its derivative f^{\prime} has the intermediate value property on I.

Notes:

- Equivalent (contrapositive) statement of Darboux's theorem: If a function does not have the intermediate value property on I then it is impossible that it is the derivative of any function on I.
- It is f^{\prime}, not f, that is claimed to have the intermediate value property in Darboux's theorem. This theorem does not follow from the standard intermediate value theorem because the derivative f^{\prime} is not necessarily continuous.
- Darboux's theorem implies that a derivative cannot have jump or removable discontinities. Any discontuity of a derivative must be essential. Recall example of a discontinuous function with IVP.

Intermediate value property for derivatives

Proof of Darboux's Theorem.

Consider $a, b \in I$ with $a<b$.
Suppose first that $f^{\prime}(a)<0<f^{\prime}(b)$. We will show $\exists x \in(a, b)$ such that $f^{\prime}(x)=0$. Since f^{\prime} exists on $[a, b]$, we must have f continuous on $[a, b]$, so the Extreme Value Theorem implies that f attains its minimum at some point $x \in[a, b]$. This minimum point cannot be an endpoint of $[a, b] \quad\left(x \neq a\right.$ because $f^{\prime}(a)<0$ and $x \neq b$ because $\left.f^{\prime}(b)>0\right)$.
Therefore, $x \in(a, b)$. But f is differentiable everywhere in (a, b), so, by the theorem on the derivative at local extrema, we must have $f^{\prime}(x)=0$.
Now suppose more generally that $f^{\prime}(a)<K<f^{\prime}(b)$. Let $g(x)=f(x)-K x$. Then g is differentiable on I and $g^{\prime}(x)=f^{\prime}(x)-K$ for all $x \in I$. In addition, $g^{\prime}(a)=f^{\prime}(a)-K<0$ and $g^{\prime}(b)=f^{\prime}(b)-K>0$, so by the argument above, $\exists x \in(a, b)$ such that $g^{\prime}(x)=0$, i.e., $f^{\prime}(x)-K=0$, i.e., $f^{\prime}(x)=K$.
The case $f^{\prime}(a)>K>f^{\prime}(b)$ is similar.

Intermediate value property for derivatives

Example $\left(f^{\prime}(x) \neq 0 \forall x \Longrightarrow f \nearrow\right.$ or $\left.\searrow\right)$
If f is differentiable on an interval I and $f^{\prime}(x) \neq 0$ for all $x \in I$ then f is either increasing or decreasing on the entire interval l.

Proof:
Suppose $\exists a, b \in I$ such that $f^{\prime}(a)<0$ and $f^{\prime}(b)>0$.
Then, from Darboux's theorem, $\exists c \in I$ such that $f^{\prime}(c)=0 . \Rightarrow \Leftarrow$
\therefore Either " $\exists a \in I$ • $f^{\prime}(a)<0$ " is FALSE

$$
\text { or " } \exists b \in I \nmid f^{\prime}(b)>0 \text { " is FALSE. }
$$

\therefore Since we know $f^{\prime}(x) \neq 0 \forall x \in I$, it must be that either $f^{\prime}(x)>0 \forall x \in I$ or $f^{\prime}(x)<0 \forall x \in I$, i.e., either f is increasing on I or decreasing on I.

The Derivative of an Inverse

Theorem (Inverse function theorem)

If f is differentiable on an interval I and $f^{\prime}(x) \neq 0 \forall x \in I$, then
$1 f$ is one-to-one on I;
$2 f^{-1}$ is differentiable on $J=f(I)$;
$3\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad$ for all $x \in 1$,
i.e., $\quad\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(\left(f^{-1}(y)\right)\right.} \quad$ for all $y \in J$.
(Textbook (TBB) Theorem 7.32, p. 445)

The Derivative of an Inverse

Key insights for proof of inverse function theorem:
■ Darboux's theorem $\Longrightarrow f$ is $1: 1$ on $/$
■ If $y=f(x)$ and $y_{0}=f\left(x_{0}\right)$ then $\quad x=f^{-1}(y)$ and $x_{0}=f^{-1}\left(y_{0}\right)$,

$$
\text { so } \quad \begin{aligned}
\frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}} & =\frac{x-x_{0}}{f(x)-f\left(x_{0}\right)} \\
& =\frac{1}{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}} .
\end{aligned}
$$

■ Since f continuous at x_{0}, we know $x \rightarrow x_{0} \Longrightarrow y \rightarrow y_{0}$.
■ But we need $y \rightarrow y_{0} \Longrightarrow x \rightarrow x_{0}$, i.e., f^{-1} continuous at y_{0}.

- In fact, f continuous and either \nearrow or \searrow on $I \Longrightarrow f^{-1}$ continuous on $J=f(I)$. (more generally, cf. Invariance of Domain thm)

[^0]: (Textbook (TBB) Theorem 7.7, p. 408)

