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Announcements

A preliminary version of Assignment 4 has been posted on the
course wiki. More problems will be added this weekend.
The assignment is due on Friday 3 Nov 2017 at 4:25pm
(remember cover sheet!)

Today we will start a new topic, but first we’ll finish the last
compactness example that we discussed.

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://lalashan.mcmaster.ca/theobio/3A03/index.php/Assignments
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Limits of functions
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Definition (Limit of a function on an interval (a, b))

Let a < x0 < b and f : (a, b)→ R. Then f is said to approach
the limit L as x approaches x0, often written “f (x)→ L as
x → x0” or

lim
x→x0

f (x) = L ,

iff for all ε > 0 there exists δ > 0 such that if 0 < |x − x0| < δ
then |f (x)− L| < ε.

Shorthand version:
∀ε > 0 ∃δ > 0 )– 0 < |x − x0| < δ =⇒ |f (x)− L| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

The function f need not be defined on an entire interval.
It is enough for f to be defined on a set with at least one
accumulation point.

Definition (Limit of a function with domain E ⊆ R)

Let E ⊆ R and f : E → R. Suppose x0 is a point of accumulation
of E . Then f is said to approach the limit L as x approaches
x0, i.e.,

lim
x→x0

f (x) = L ,

iff for all ε > 0 there exists δ > 0 such that if x ∈ E , x 6= x0, and
|x − x0| < δ then |f (x)− L| < ε.

Shorthand version:
∀ε > 0 ∃δ > 0 )–

(
x ∈ E ∧ 0 < |x − x0| < δ

)
=⇒ |f (x)− L| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Example

Prove directly from the definition of a limit that

lim
x→3

(2x + 1) = 7 .

(solution on board)

Example

Prove directly from the definition of a limit that

lim
x→2

x2 = 4 .

(solution on board)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Rather than the ε-δ definition, we can exploit our experience with
sequences to define “f (x)→ L as x → x0”.

Definition (Limit of a function via sequences)

Let E ⊆ R and f : E → R. Suppose x0 is a point of accumulation
of E . Then

lim
x→x0

f (x) = L

iff for every sequence {en} of points in E \ {x0},

lim
n→∞

en = x0 =⇒ lim
n→∞

f (en) = L .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Lemma (Equivalence of limit definitions)

The ε-δ definition of limits and the sequence definition of limits are
equivalent.

(solution on board)

Note: The definition of a limit via sequences is sometimes easier to
use than the ε-δ definition.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proof of Equivalence of ε-δ definition and sequence
definition of limit.

Proof (ε-δ =⇒ seq).

Suppose the ε-δ definition holds and {en} is a sequence in E \ {x0}
that converges to x0. Given ε > 0, there exists δ > 0 such that if
0 < |x − x0| < δ then |f (x)− L| < ε. But since en → x0, given
δ > 0, there exists N ∈ N such that, for all n ≥ N, |en − x0| < δ.
This means that if n ≥ N then x = en satisfies 0 < |x − x0| < δ,
implying that we can put x = en in the statement |f (x)− L| < ε.
Hence, for all n ≥ N, |f (en)− L| < ε. Thus,

en → x0 =⇒ f (en)→ L ,

as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

A preliminary version of Assignment 4 has been posted on the
course wiki. More problems will be added this weekend.
The assignment is due on Friday 3 Nov 2017 at 4:25pm
(remember cover sheet!)

Solutions to Test 1 have been posted on the course wiki.
Read them!

We hope to return the tests in tutorials on Monday and
Tuesday. Make sure to attend your tutorial in order to pick up
your test.

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://lalashan.mcmaster.ca/theobio/3A03/index.php/Assignments
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Proof of Equivalence of ε-δ definition and sequence
definition of limit.

Proof (seq =⇒ ε-δ).

Suppose that as x → x0, f (x) 6→ L according to the ε-δ definition.
We must show that f (x) 6→ L according to the sequence definition.

Since the ε-δ criterion does not hold, ∃ε > 0 such that ∀δ > 0
there is some xδ ∈ E for which 0 < |xδ − x0| < δ and yet
|f (xδ)− L| ≥ ε. This is true, in particular, for δ = 1/n, where n is
any natural number. Thus, ∃ε > 0 such that: ∀n ∈ N, there exists
xn ∈ E such that 0 < |xn − x0| < 1/n and yet |f (xn)− L| ≥ ε.
This demonstrates that there is a sequence {xn} in E \ {x0} for
which xn → x0 and yet f (xn) 6→ L. Hence, f (x) 6→ L as x → x0

according to the sequence criterion, as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits
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Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity II 16/63

One-sided limits

Definition (Right-Hand Limit)

Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) = L

if for every ε > 0 there is a δ > 0 so that

|f (x)− L| < ε

whenever x0 < x < x0 + δ and x ∈ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits

One-sided limits can also be expressed in terms of sequence
convergence.

Definition (Right-Hand Limit – sequence version)

Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) = L

if for every decreasing sequence {en} of points of E with en > x0

and en → x0 as n→∞,

lim
n→∞

f (en) = L .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Infinite limits

Definition (Right-Hand Infinite Limit)

Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) =∞

if for every M > 0 there is a δ > 0 such that f (x) ≥ M whenever
x0 < x < x0 + δ and x ∈ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of limits

There are theorems for limits of functions of a real variable that
correspond (and have similar proofs) to the various results we
proved for limits of sequences:

Uniqueness of limits

Algebra of limits

Order properties of limits

Limits of absolute values

Limits of Max/Min

See Chapter 5 of textbook for details.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of compositions of functions

When is lim
x→x0

g
(
f (x)

)
= g

(
lim
x→x0

f (x)
)

?

Theorem (Limit of composition)

Suppose
lim
x→x0

f (x) = L .

If g is a function defined in a neighborhood of the point L and

lim
z→L

g(z) = g(L)

then
lim
x→x0

g
(
f (x)

)
= g

(
lim
x→x0

f (x)
)

= g(L) .

Note: It is a little more complicated to generalize the statement of this
theorem so as to minimize the set on which g must be defined (see next
slide) but the proof is no more difficult.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of compositions of functions – more generally

Theorem (Limit of composition)

Let A,B ⊆ R, f : A→ R, f (A) ⊆ B, and g : B → R. Suppose x0

is an accumulation point of A and

lim
x→x0

f (x) = L .

Suppose further that g is defined at L. If L is an accumulation
point of B and

lim
z→L

g(z) = g(L) ,

or ∃δ > 0 such that f (x) = L for all x ∈ (x0 − δ, x0 + δ) ∩ A, then

lim
x→x0

g
(
f (x)

)
= g

(
lim
x→x0

f (x)
)

= g(L) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity

Intuitively, a function f is continuous if you can draw its graph
without lifting your pencil from the paper. . .
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity

and discontinuous otherwise. . .
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity

In order to develop a rigorous foundation for the theory of
functions, we need to be more precise about what we mean by
“continuous”.

The main challenge is to define “continuity” in a way that works
consistently on sets other than intervals (and generalizes to spaces
that are more abstract than R).

We will define:

continuity at a single point;

continuity on an open interval;

continuity on a closed interval;

continuity on more general sets.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity III 25/63

Mathematics
and Statistics∫
M

dω =

∫
∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 21
Continuity III

Monday 30 October 2017

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity III 26/63

Announcements

A preliminary version of Assignment 4 has been posted on the
course wiki. More problems will be added tomorrow.
The assignment is due on Monday 6 Nov 2017 at 2:25pm
(remember cover sheet!)

Solutions to Test 1 have been posted on the course wiki.
Read them!

Tests will be returned in tutorials today and tomorrow. Make
sure to attend your tutorial in order to pick up your test.

Test results (next slide).

Note: It seems the test was more difficult than we anticipated.
The average is very low. We will adjust marks before
submitting final grades.

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://lalashan.mcmaster.ca/theobio/3A03/index.php/Assignments
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Histogram of 2017 Math 3A03 Test 1 marks
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101 registered students
91 submitted
10 did not submit
2 perfect
0 zero
34 failed
Mode: 25/50
Median: 26/50
Mean: 28.5/50
SD: 9.2/50

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Last time. . .

Equivalence of ε-δ definition and sequence definition of limit.

One-sided limit from the right.

Limit of composition.

Intuition for notion of continuity.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise continuity

Definition (Continuous at an interior point of the domain of f )

If the function f is defined in a neighbourhood of the point x0 then
we say f is continuous at x0 iff

lim
x→x0

f (x) = f (x0) .

This definition works more generally provided x0 is a point of
accumulation of the domain of f (notation: dom(f ) ).

We will also consider a function to be continuous at any isolated
point in its domain.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise continuity

Definition (Continuous at any x0 ∈ dom(f ) – limit version)

If x0 ∈ dom(f ) then f is continuous at x0 iff x0 is either an
isolated point of dom(f ) or x0 is an accumulation point of
dom(f ) and limx→x0 f (x) = f (x0).

Definition (Continuous at any x0 ∈ dom(f ) – sequence version)

If x0 ∈ dom(f ) then f is continuous at x0 iff for any sequence
{xn} in dom(f ), if xn → x0 then f (xn)→ f (x0).

Definition (Continuous at any x0 ∈ dom(f ) – ε-δ version)

If x0 ∈ dom(f ) then f is continuous at x0 iff for any ε > 0 there
exists δ > 0 such that if x ∈ dom(f ) and |x − x0| < δ then
|f (x)− f (x0)| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise continuity

Example

Suppose f : A→ R. In which cases is f continuous on A?

A = (0, 1) ∪ {2}, f (x) = x ;

A = {0} ∪ { 1
n : n ∈ N} ∪ {2}, f (x) = x ;

A = { 1
n : n ∈ N} ∪ {2}, f (x) = whatever you like.

Example

Is it possible for a function f to be discontinuous at every point of
R and yet for its restriction to the rational numbers (f

∣∣
Q) to be

continuous at every point in Q?

Extra Challenge Problem:
Prove or disprove: There is a function f : R→ R that is
continuous at every irrational number and discontinuous at every
rational number.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity on an interval

Definition (Continuous on an open interval)

The function f is said to be continuous on (a, b) iff

lim
x→x0

f (x) = f (x0) for all x0 ∈ (a, b) .

Definition (Continuous on a closed interval)

The function f is said to be continuous on [a, b] iff it is
continuous on the open interval (a, b), and

lim
x→a+

f (x) = f (a) and lim
x→b−

f (x) = f (b) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity on an arbitrary set E ⊆ R

Definition (Continuous on a set E )

The function f is said to be continuous on E iff f is continuous
at each point x ∈ E .

Example

Every polynomial is continuous on R.

Every rational function is continuous on its domain.

These facts are painful to prove directly from the definition.
But they follow easily if we know that the composition of
continuous functions is continuous (which is true under natural
conditions) and we have the theorem on the algebra of limits.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity III 34/63

Continuity of compositions of functions

Theorem (Continuity of f ◦ g at a point)

If g is continuous at x0 and f is continuous at g(x0) then f ◦ g is
continuous at x0.

Consequently, if g is continuous at x0 and f is continuous at g(x0)
then

lim
x→x0

f
(
g(x)

)
= f
(

lim
x→x0

g(x)
)
.

Theorem (Continuity of f ◦ g on a set)

If g is continuous on A ⊆ R and f is continuous on g(A) then
f ◦ g is continuous on A.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity of compositions of functions

Example

Use the theorem on continuity of f ◦ g , and the theorem on the
algebra of limits, to prove that

1 the polynomial x8 + x3 + 2 is continuous on R;

2 the rational function
x2 + 2

x2 − 2
is continuous on R \ {−

√
2,
√

2}.

3 the function

√
x2 + 2

x2 − 2
is continuous on its domain.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

In the ε-δ definition of continuity, the δ that must exist depends
on ε AND on the point x0, i.e., δ = δ(f , ε, x0).

Definition (Uniformly continuous)

If f : A→ R then f is said to be uniformly continuous on A iff
for every ε > 0 there exists δ > 0 such that if x , y ∈ A and
|x − y | < δ then |f (x)− f (y)| < ε.

Note: This is a stronger form of continuity: Given any ε > 0,
there is a single δ > 0 that works for the entire set A.
(δ still depends on f and ε.)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 4 is now COMPLETE on the course wiki.
Due Monday 6 Nov 2017 at 2:25pm
(remember cover sheet!)

Solutions to Test 1 have been posted on the course wiki.
Read them!

On Friday you will be asked to do a 5 minute online survey.
Please make sure to have your laptop or phone or some device
you like for filling in web forms.

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://lalashan.mcmaster.ca/theobio/3A03/index.php/Assignments
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Last time. . .

Limits of compositions.

Continuity at a point and on a set.

Continuity of compositions.

Uniform continuity.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Theorem (Unif. cont. on a bounded interval =⇒ bounded)

If f is uniformly continuous on a bounded interval I then f is
bounded on I .

(solution on board)

Clean proof.

Suppose f is uniformly continuous on the interval I with endpoints
a, b (where a < b). Then, given ε > 0 we can find δ > 0 such that
if x , y ∈ I and |x − y | < δ then |f (x)− f (y)| < ε.

Moreover, given any δ > 0 and any c > 0, we can find n ∈ N such
that 0 < c

n < δ.

Choose n ∈ N such that if x , y ∈ I and |x − y | < 2
(
b−a
n

)
then

|f (x)− f (y)| < 1.
Continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Clean proof (continued).

Divide I into n subintervals with endpoints

xi = a + i
(b − a

n

)
, i = 0, 1, . . . , n.

For 0 ≤ i ≤ n − 1, define Ii = [xi , xi+1] ∩ I (we intersect with I in
case a /∈ I or b /∈ I ), and note that ∀x , y ∈ Ii we have
|x − y | ≤ b−a

n < 2
(
b−a
n

)
and hence |f (x)− f (y)| < 1 ∀x , y ∈ Ii .

Let x i = (xi + xi+1)/2 (the midpoint of interval Ii ). Then, in
particular, we have |f (x)− f (x i )| < 1 ∀x ∈ Ii , i.e.,

f (x i )− 1 < f (x) < f (x i ) + 1 ∀x ∈ Ii .

Thus, f is bounded on Ii and therefore has a LUB and GLB on Ii .

Continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Clean proof (continued).

Therefore, for i = 0, 1, . . . , n − 1, define

mi = inf{f (x) : x ∈ Ii} ,
Mi = sup{f (x) : x ∈ Ii} ,

and let
m = min{mi : i = 0, 1, . . . , n − 1} ,
M = max{Mi : i = 0, 1, . . . , n − 1} .

Then

m ≤ f (x) ≤ M ∀x ∈ I =
n−1⋃
i=1

Ii ,

i.e., f is bounded on the entire interval I .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Theorem (Cont. on a closed interval =⇒ unif. cont.)

If f : [a, b]→ R is continuous then f is uniformly continuous.

(solution on board)

Corollary (Continuous on a closed interval =⇒ bounded)

If f : [a, b]→ R is continuous then f is bounded.

Proof.

Combine the above two theorems.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Note:

Lecture 23 was given by David Duncan using the blackboard only.

The following slides summarize the content of that lecture.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Last time and today

Last time:

Theorem (UC =⇒ C)

Suppose f : D → R is uniformly continuous. Then f is continuous.

Theorem (CptUC =⇒ Bdd)

Suppose D is a compact set and f : D → R is uniformly
continuous. Then f is bounded.

Today:

Theorem (CptC =⇒ UC)

Suppose D is a compact set and f : D → R is continuous. Then f
is uniformly continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Theorems UC =⇒ C and CptC =⇒ UC say that on a compact
domain, continuity is equivalent to uniform continuity. The
converse is also true:

Theorem

If every continuous function on a set E is uniformly continuous
then E is compact.

Recall that compactness is associated with global properties (as
opposed to local properties). Uniform continuity is a global
property in that a single δ is sufficient for an entire set.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proof of Theorem CptC =⇒ UC

Suppose D is compact and f : D → R is continuous. To show that
f is uniformly continuous, fix ε > 0. By the continuity of f , for
each x ∈ D, there is some δx > 0 so that if y ∈ D\ {x} satisfies
|x − y | < δx , then |f (x)− f (y)| < ε/2. Consider the collection

U = {(x − δx/2, x + δx/2) : x ∈ D}

of open sets (in class, David D forgot to include the “/2” here).
This clearly is an open cover of D, since x ∈ (x − δx/2, x + δx/2)
for all x ∈ D. Since D is compact, U has a finite subcover U ′,
which we can write as

U ′ = {(x1 − δx1/2, x1 + δx1/2), . . . , (xN − δxN/2, xN + δxN/2)}

for some natural number N. Set δ = min(δ1/2, . . . , δN/2).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proof of Theorem CptC =⇒ UC (cont’d)

To verify the uniform continuity property, suppose x , y ∈ D satisfy
|x − y | < δ. Since U ′ is a cover of D, there is some 1 ≤ n ≤ N so
that x ∈ (xn − δxn/2, xn + δxn/2). This implies |x − xn| < δn and so
|f (x)− f (xn)| < ε/2. Note that we also have

|y − xn| ≤ |y − x |+ |x − xn| < δ + δn/2 < δn

and so |f (y)− f (xn)| < ε/2. The triangle inequality then gives

|f (x)− f (y)| ≤ |f (x)− f (xn)|+ |f (y)− f (xn)| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity V 50/63

Extreme Value Theorem

a

max

b

min

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Theorem (Extreme value theorem)

Suppose D is compact and non-empty, and f : D → R is
continuous. Then f achieves its maximum and its minimum. That
is, there are some xm, xM ∈ D so that

f (xm) ≤ f (x) ≤ f (xM), ∀x ∈ D.

Proof 1 (by contradiction).

We will prove that f attains its maximum; the proof that it attains its
minimum is similar. Since f is continuous on the compact set D, it is bounded
on D. This means that the range of f , i.e., the set

f (D)
def
= {f (x) : x ∈ D}

is bounded. This set is not ∅, so it has a LUB α. Since α ≥ f (x) for x ∈ D, it
suffices to show that α = f (xM) for some xM ∈ D.

Suppose instead that α 6= f (y) for any y ∈ D, i.e., α > f (y) for all y ∈ D.
Then the function g defined by . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Extreme Value Theorem

Proof 1 of Extreme Value Theorem (continued).

g(x) =
1

α− f (x)
, x ∈ D,

is positive and continuous on D, since the denominator of the RHS
is always positive. Since D is compact, it follows from Theorems
CptC =⇒ UC and CptUC =⇒ Bdd that g is bounded. We will
show that g is unbounded, which will be the contradiction. Since
α is a LUP of f (D), it follows from Problem 9 of the Midterm that
α is contained in the closure f (D). Hence, we can find a sequence
of points xn in D with f (xn)→ α. But then

lim
n→∞

g(xn) = +∞,

which shows g is unbounded. ⇒⇐
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Extreme Value Theorem

Proof 2 (Sketch).

Once again, we will only prove that xM exists; the existence of xm
is similar. Suppose D is compact and f : D → R is continuous.
Then f (D) is compact (try to prove this on your own). In
particular, f (D) is closed, bounded and non-empty, so by Problem
9 of the Midterm, f (D) contains its own supremum. That is, we
can write the supremum as f (xM) for some xM ∈ D. Since the
supremum is an upper bound, we have f (x) ≤ f (xM) for all
x ∈ D.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Last time. . .

Online survey: Thanks if you did it! Please do it if you haven’t
already. Link is on Course information page of course wiki.

Continuous on a compact set =⇒ uniformly continuous.

Mentioned that a continuous image of a compact set is
compact.

Stated and proved Extreme Value Theorem.

Note: Assignment 4 was due at 2:25pm today.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://surveys.mcmaster.ca/limesurvey2/index.php/899983
http://lalashan.mcmaster.ca/theobio/3A03/index.php/Course_information
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Intermediate Value Theorem

a

f (a)

b

f (b)

c

d

Definition (Intermediate Value Property (IVP))

A function f defined on an interval I is said to have the
intermediate value property (IVP) on I iff for each a, b ∈ I
with f (a) 6= f (b), and for each d between f (a) and f (b), there
exists c between a and b for which f (c) = d .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intermediate Value Theorem

Question: If a function has the IVP on an interval I , must it be
continuous on I?

Example

f (x) =

{
sin 1

x x 6= 0,

0 x = 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intermediate Value Theorem

Theorem (Intermediate Value Theorem (IVT))

If f is continuous on an interval I then f has the intermediate
value property (IVP) on I .

(solution after proving the neighbourhood sign lemma)

Note: The interval I in the statement of the IVT does not have to
be closed and it does not have to be bounded.
Unlike the extreme value theorem, the IVT is not a theorem about
functions defined on compact sets.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intermediate Value Theorem

Lemma (Neighbourhood sign)

Suppose I is an interval and f : I → R is continuous at a ∈ I . If f (a) > 0
then f is positive in a neighbourhood of a. Similarly, if f (a) < 0, then f
is negative in a neighbourhood of a.

Proof.

Consider the case f (a) > 0. Since f is continuous at a, given ε > 0
∃δ > 0 such that if |x − a| < δ then |f (x)− f (a)| < ε. Since f (a) > 0
we can take ε = f (a). Thus, ∃δ > 0 such that if |x − a| < δ then
|f (x)− f (a)| < f (a), i.e.,

|x − a| < δ =⇒ − f (a) < f (x)− f (a) < f (a) =⇒ 0 < f (x) < 2f (a) .

In particular, f (x) > 0 in a neighbourhood∗ of radius δ about a.

The case f (a) < 0 is similar: take ε = − f (a).

∗The neighbourhood is (a− δ, a + δ), unless a is an endpoint of the set on which f is
defined, in which case the neighbourhood is either [a, a + δ) or (a− δ, a].

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intermediate Value Theorem

The Intermediate Value Theorem follows directly from the
following lemma, which is what we’ll prove:

Lemma (Existence of roots)

If f is continuous on [a, b] and f (a) < 0 < f (b) then there exists
x ∈ [a, b] such that f (x) = 0.

How does Intermediate Value Property follow?

If f (a) < M < f (b) for some M ∈ R, then apply the lemma to
g(x) = f (x)−M.

If f (a) > M > f (b) for some M ∈ R, then apply the lemma to
g(x) = M − f (x).

What if the interval I on which f is continuous is not a closed
interval?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intermediate Value Theorem

Idea for proof of root existence lemma:

A

a α b

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intermediate Value Theorem

Sketch of proof of root existence lemma:

1 (i) A = {x : a ≤ x ≤ b, and f is negative on the interval [a, x ]};
(ii) α = sup(A) exists;
(iii) neighbourhood sign lemma =⇒ a < α < b.

2 Prove by contradiction that f (α) < 0 is impossible.
To guide this argument, it helps to draw a picture that is
consistent with the assumption that f (α) < 0. This picture is
not really correct because it represents an assumption that we
will prove to be false.

3 Prove by contradiction that f (α) > 0 is impossible.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intermediate Value Theorem

Picture to guide proof by contradiction that it is impossible that f (α) < 0:

A

f (α)

a x0 α x1 b

δ

Given f (α) < 0, the neighbourhood sign lemma implies ∃δ > 0 such that
f (x) < 0 on (α− δ, α + δ).

For any x0 ∈ (α− δ, α), since x0 < α, we must have x0 ∈ A, i.e., f (x) < 0
on [a, x0]. Otherwise, α would not be the least upper bound of A.

Now pick any x1 ∈ (α, α + δ). We know x1 /∈ A because α < x1. But
f (x) < 0 on [x0, x1] since [x0, x1] ⊂ (α− δ, α + δ) and f (x) < 0 on [a, x0]
because x0 ∈ A. Hence f (x) < 0 on [a, x1], i.e., x1 ∈ A. ⇒⇐

Instructor: David Earn Mathematics 3A03 Real Analysis I


