13 Topology of \mathbb{R} II

14 Topology of \mathbb{R} III

15 Topology of \mathbb{R} IV

16 Topology of \mathbb{R} V

17 Topology of \mathbb{R} VI

Topology of \mathbb{R}

Intervals

Open interval:

$$(a,b) = \{x : a < x < b\}$$

Closed interval:

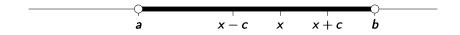
$$[c,d] = \{x : c \le x \le d\}$$

Half-open interval:

$$(e, f] = \{x : e < x \le f\}$$

nterior points

Interior point



Definition (Interior point)

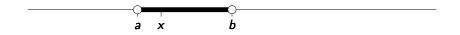
If $E \subseteq \mathbb{R}$ then x is an interior point of E if x lies in an open interval that is contained in E, *i.e.*, $\exists c > 0$ such that $(x - c, x + c) \subset E$.

Interior point examples

Set E	Interior points?
(-1, 1)	Every point
[0, 1]	Every point except the endpoints
\mathbb{N}	∌
\mathbb{R}	Every point
\mathbb{Q}	∌
$(-1,1)\cup \left[0,1 ight]$	Every point except 1
$\left(-1,1 ight)\setminus \left\{rac{1}{2} ight\}$	Every point

leighbourhood

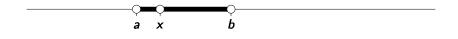
Neighbourhood



Definition (Neighbourhood)

A **neighbourhood** of a point $x \in \mathbb{R}$ is an open interval containing x.

Deleted neighbourhood

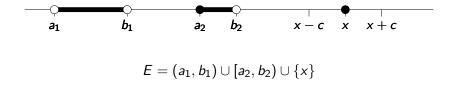


Definition (Deleted neighbourhood)

A **deleted neighbourhood** of a point $x \in \mathbb{R}$ is a set formed by removing x from a neighbourhood of x.

 $(a,b) \setminus \{x\}$

Isolated point



Definition (Isolated point)

If $x \in E \subseteq \mathbb{R}$ then x is an **isolated point** of E if there is a neighbourhood of x for which the only point in E is x itself, *i.e.*, $\exists c > 0$ such that $(x - c, x + c) \cap E = \{x\}$.

Isolated point examples

Set E	Isolated points?
(-1, 1)	∄
[0,1]	∄
\mathbb{N}	Every point
\mathbb{R}	∄
\mathbb{Q}	∄
$(-1,1)\cup \llbracket 0,1 brace$	∄
$(-1,1)\setminus\{rac{1}{2}\}$	∄

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 13 Topology of ℝ II Wednesday 4 October 2017

Last time...

Concepts associated with sets of real numbers:

- Countable set
- Interval
- Neighbourhood
- Deleted neighbourhood
- Interior point
- Isolated point

Accumulation point

$$E = \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$$

Definition (Accumulation Point or Limit Point)

If $E \subseteq \mathbb{R}$ then x is an **accumulation point** or **limit point** of E if every neighbourhood of x contains infinitely many points of E,

i.e.,
$$\forall c > 0$$
 $(x - c, x + c) \cap (E \setminus \{x\}) \neq \emptyset$.

<u>Notes</u>:

- It is possible but <u>not necessary</u> that $x \in E$.
- The shorthand condition is equivalent to saying that every <u>deleted neighbourhood</u> of x contains <u>at least one</u> point of E.

Accumulation point examples

Set E	Accumulation points?
(-1, 1)	[-1, 1]
[0, 1]	[0, 1]
\mathbb{N}	∄
\mathbb{R}	\mathbb{R}
\mathbb{Q}	\mathbb{R}
$(-1,1)\cup [0,1]$	[-1, 1]
$\left(-1,1 ight)\setminus \left\{rac{1}{2} ight\}$	[-1, 1]
$\left\{1-rac{1}{n}:n\in\mathbb{N} ight\}$	$\{1\}$

Definition (Boundary Point)

If $E \subseteq \mathbb{R}$ then x is a **boundary point** of E if every neighbourhood of x contains at least one point of E and at least one point not in E, *i.e.*, $\forall c > 0$, $(x - c, x + c) \cap E \neq \emptyset$

$$\forall c > 0 \qquad (x - c, x + c) \cap E \neq \emptyset \\ \land \qquad (x - c, x + c) \cap (\mathbb{R} \setminus E) \neq \emptyset$$

<u>*Note:*</u> It is possible but <u>not necessary</u> that $x \in E$.

Definition (Boundary)

If $E \subseteq \mathbb{R}$ then the **boundary** of *E*, denoted ∂E , is the set of all boundary points of *E*.

Boundary point examples

Set E	Boundary points?
(-1,1)	$\{-1,1\}$
[0, 1]	{0,1}
\mathbb{N}	\mathbb{N}
\mathbb{R}	∄
\mathbb{Q}	\mathbb{R}
$(-1,1)\cup [0,1]$	$\{-1,1\}$
$(-1,1)\setminus \{rac{1}{2}\}$	$\{-1, \frac{1}{2}, 1\}$
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$	$\left\{1-rac{1}{n}:n\in\mathbb{N} ight\}\cup\{1\}$

Definition (Closed set)

A set $E \subset \mathbb{R}$ is **closed** if it contains all of its accumulation points.

Definition (Closure of a set)

If $E \subseteq \mathbb{R}$ and E' is the set of accumulation points of E then $\overline{E} = E \cup E'$ is the closure of E.

Note: If the set *E* has no accumulation points, then *E* is closed because there are no accumulation points to check.

Definition (Open set)

A set $E \subseteq \mathbb{R}$ is **open** if every point of *E* is an interior point.

Definition (Interior of a set)

If $E \subseteq \mathbb{R}$ then the **interior** of *E*, denoted E° or E° , is the set of all interior points of *E*.

Examples

Set E	Closed?	Open?	Ē	E°	∂E
(-1, 1)	NO	YES	[-1, 1]	Е	$\{-1,1\}$
[0, 1]	YES	NO	Е	(0,1)	$\{0,1\}$
\mathbb{N}	YES	NO	\mathbb{N}	Ø	\mathbb{N}
\mathbb{R}	YES	YES	R	\mathbb{R}	Ø
Ø					
Q					
$(-1,1)\cup [0,1]$					
$\left(-1,1 ight)\setminus \{rac{1}{2}\}$					
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$					

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 14 Topology of ℝ III Friday 6 October 2017

- Assignment 3 is due on Friday 20 Oct 2017 at 4:25pm (remember cover sheet!)
- Math 3A03 Test #1 Monday 23 Oct 2017 at 7:00pm in MDCL 1102

Examples

Set E	Closed?	Open?	Ē	E°	∂E
(-1,1)	NO	YES	[-1, 1]	Е	$\{-1,1\}$
[0, 1]	YES	NO	E	(0,1)	$\{0,1\}$
\mathbb{N}	YES	NO	\mathbb{N}	Ø	\mathbb{N}
\mathbb{R}	YES	YES	\mathbb{R}	\mathbb{R}	Ø
Ø	YES	YES	Ø	Ø	Ø
Q	NO	NO	\mathbb{R}	Ø	\mathbb{R}
$(-1,1)\cup \left[0,1 ight]$	NO	NO	$\left[-1,1 ight]$	(-1, 1)	$\{-1,1\}$
$(-1,1)\setminus\{rac{1}{2}\}$	NO	YES	$\left[-1,1 ight]$	Е	$\{-1,\tfrac{1}{2},1\}$
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$	NO	NO	$E \cup \{1\}$	Ø	$E \cup \{1\}$

Component intervals of open sets

What does the most general open set look like?

Theorem (Component intervals)

If G is an open subset of \mathbb{R} and $G \neq \emptyset$ then there is a unique (possibly finite) sequence of disjoint open intervals $\{(a_n, b_n)\}$ such that

$$G = (a_1, b_1) \cup (a_2, b_2) \cup \cdots \cup (a_n, b_n) \cup \cdots,$$

i.e.,
$$G = \bigcup_{n=1}^{\infty} (a_n, b_n).$$

The open intervals (a_n, b_n) are said to be the **component** intervals of *G*.

(Textbook (TBB) Theorem 4.15, p. 231)

Component intervals of open sets

Main ideas of proof of component intervals theorem:

•
$$x \in G \implies x$$
 is an interior point of $G \implies$

- some neighbourhood of x is contained in G, i.e., $\exists c > 0$ such that $(x - c, x + c) \subset G$
- ∃ a <u>largest</u> neighbourhood of x that is contained in G: this largest neighbourhood is $I_x = (\alpha, \beta)$, where

$$\alpha = \inf\{a: (a, x] \subset G\}, \qquad \beta = \sup\{b: [x, b) \subset G\}$$

• I_x contains a rational number, *i.e.*, $\exists r \in I_x \cap \mathbb{Q}$

- \therefore We can index all the intervals I_x by <u>rational</u> numbers
- ∴ There are most countably many intervals that make up G (*i.e.*, G is the union of a sequence of intervals)
- We can choose a <u>disjoint</u> subsequence of these intervals whose union is all of G (see proof in textbook for details).

Open vs. Closed Sets

Definition (Complement of a set of real numbers)

If $E \subseteq \mathbb{R}$ then the **complement** of *E* is the set

 $E^{\mathsf{c}} = \{ x \in \mathbb{R} : x \notin E \}.$

Theorem (Open vs. Closed)

If $E \subseteq \mathbb{R}$ then E is open iff E^c is closed.

(Textbook (TBB) Theorem 4.16)

Open vs. Closed Sets

Theorem (Properties of open sets of real numbers)

- **1** The sets \mathbb{R} and \emptyset are open.
- 2 Any intersection of a finite number of open sets is open.
- 3 Any union of an arbitrary collection of open sets is open.
- 4 The complement of an open set is closed.

(Textbook (TBB) Theorem 4.17)

Theorem (Properties of closed sets of real numbers)

- **1** The sets \mathbb{R} and \varnothing are closed.
- 2 Any union of a finite number of closed sets is closed.
- 3 Any intersection of an arbitrary collection of closed sets is closed.
- 4 The complement of a closed set is open.

(Textbook (TBB) Theorem 4.18)

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 15 Topology of ℝ IV Monday 16 October 2017

- Assignment 3 is due this Friday 20 Oct 2017 at 4:25pm (remember cover sheet!)
- Math 3A03 Test #1, one week from today, Monday 23 Oct 2017 at 7:00pm in MDCL 1102 (room is booked for 90 minutes; you should not feel rushed)
- Math 3A03 Final Exam: Thurs 21 Dec 2017, 4:00pm-6:30pm

Concepts covered recently

- Countable set
- Interval
- Neighbourhood
- Deleted neighbourhood
- Interior point
- Isolated point
- Accumulation point

- Boundary point
- Boundary
- Closed set
- Closure
- Open set
- Interior
- Complement

Definition (Bounded function)

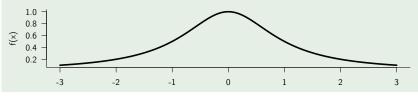
A real-valued function f is **bounded** on the set E if there exists M > 0 such that $|f(x)| \le M$ for all $x \in E$.

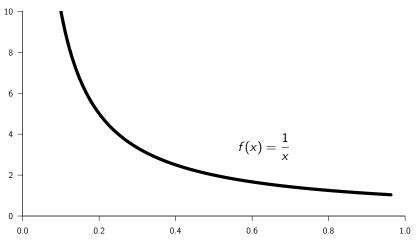
(*i.e.*, the function f is bounded on E iff $\{f(x) : x \in E\}$ is a bounded set.)

<u>Note</u>: This is a *global* property because there is a single bound M associated with the entire set E.

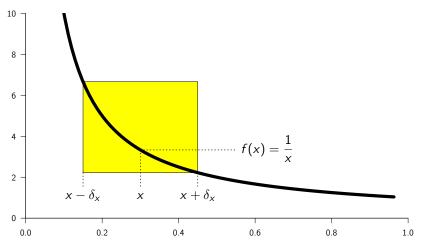
Example

The function $f(x) = 1/(1 + x^2)$ is bounded on \mathbb{R} . *e.g.*, M = 1.





f(x) = 1/x is <u>not</u> bounded on the interval E = (0, 1).



f(x) = 1/x is **locally bounded** on the interval E = (0, 1), *i.e.*, $\forall x \in E$, $\exists \delta_x, M_x > 0 \Rightarrow |f(t)| \leq M_x \ \forall t \in (x - \delta_x, x + \delta_x)$.

Definition (Locally bounded at a point)

A real-valued function f is **locally bounded** at the point x if there is a neighbourhood of x in which f is bounded, *i.e.*, there exists $\delta_x > 0$ and $M_x > 0$ such that $|f(t)| \le M_x$ for all $t \in (x - \delta_x, x + \delta_x)$.

Definition (Locally bounded on a set)

A real-valued function f is **locally bounded** on the set E if f is locally bounded at each point $x \in E$.

<u>Note</u>: The size of the neighbourhood (δ_x) and the local bound (M_x) depend on the point x.

Example (Function that is not even locally bounded)

Give an example of a function that is defined on the interval (0, 1) but is <u>not</u> locally bounded on (0, 1).

(solution on board)

Example (Function that is a mess near 0)

Give an example of a function f(x) that is defined everywhere, yet in any neighbourhood of the origin there are infinitely many points at which f is <u>not</u> locally bounded.

(solution on board)

Extra Challenge Problem: Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is <u>not</u> locally bounded <u>anywhere</u>?

- What condition(s) rule out such pathological behaviour?
- When does a property holding locally (near any given point in a set) imply that it holds globally (for the set as a whole)?
- For example: What condition(s) must a set E ⊆ R satisfy in order that a function f that is locally bounded on E is necessarily bounded on E?
- We will see that the condition we are seeking is that the set E must be "compact" ...

Recall the Bolzano-Weierstrass theorem, which we proved when investigating sequences of real numbers:

Theorem (Bolzano-Weierstrass theorem for sequences)

Every bounded sequence in \mathbb{R} contains a convergent subsequence.

For any set of real numbers, we define:

Definition (Bolzano-Weierstrass property)

A set $E \subseteq \mathbb{R}$ is said to have the **Bolzano-Weierstrass property** iff any sequence of points chosen from *E* has a subsequence that converges to a point in *E*.

Compactness

Theorem (Bolzano-Weierstrass theorem for sets)

A set $E \subseteq \mathbb{R}$ has the Bolzano-Weierstrass property iff E is closed and bounded.

(solution on board) (Textbook (TBB) Theorem 4.21, p. 241)

Notes:

- Why do we need both *closed* and *bounded*? Why didn't we need *closed* in the original version of the Bolzano-Weierstrass theorem (for sequences)?
 - Because we didn't require the limit of the convergent subsequence to be in the set!
- The Bolzano-Weierstrass theorem for sets implies that "If $E \subseteq \mathbb{R}$ is bounded then its closure \overline{E} has the Bolzano-Weierstrass property".
 - The original Bolzano-Weierstrass theorem for sequences is a special case of this statement because any convergent sequence together with its limit is a closed set.

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 16 Topology of ℝ V Wednesday 18 October 2017

- Niky Hristov's last Monday office hour will be on 23 October, before the midterm test. For the remainder of the term, Niky's office hours will change to Tuesdays 1:30–3:30pm.
- Assignment 3 is due this Friday 20 Oct 2017 at 4:25pm (remember cover sheet!)
- Math 3A03 Test #1,
 - Monday 23 Oct 2017 at 7:00pm in MDCL 1102 (room is booked for 90 minutes; you should not feel rushed)
 - Question sheets for 2016 tests are now posted on the course wiki.
- Math 3A03 Final Exam: Thurs 21 Dec 2017, 4:00pm-6:30pm

Bijections

The terms **one-to-one** (injective), **onto** (surjective), and **one-to-one correspondence** (bijection) are giving some students trouble.

(Recall, we used bijection in our definition of countable.)

Let's take a step back and recall:

- When we define a **function**, we need three things:
 - the **domain**, *i.e.*, the set to which the function is applied;
 - the codomain, *i.e.*, the target set where the values of the function lie;
 - a rule for taking elements of the domain into the codomain.
- If we write $f : A \to B$ then A is the <u>domain</u> and B is the <u>codomain</u>.
- The range of a function is the subset of the codomain consisting of all values of the function applied to the domain.

Bijections

Example

Let
$$f(x) = x^2$$
, $x \in \mathbb{R}$.

- Is $f \text{ onto } \mathbb{R}$?
- Is f <u>one-to-one</u> on \mathbb{R} ? On any interval?
- Is f a <u>bijection</u>?

Example

- Find a bijection between $[0,\infty)$ to $[1,\infty)$.
- Find a different bijection between $[0,\infty)$ to $[1,\infty)$.

Extra Challenge Problem:

Construct a bijection between [0,1] and (0,1).

Definition (Open Cover)

Let $E \subseteq \mathbb{R}$ and let \mathcal{U} be a family of open intervals. If for every $x \in E$ there exists at least one interval $U \in \mathcal{U}$ such that $x \in U$, *i.e.*,

$$E\subseteq \bigcup\{U:U\in \mathcal{U}\},\$$

then \mathcal{U} is called an **open cover** of E.

Example (Open covers of \mathbb{N})

Give examples of open covers of \mathbb{N} .

•
$$\mathcal{U} = \left\{ \left(n - \frac{1}{2}, n + \frac{1}{2} \right) : n = 1, 2, \dots \right\}$$

• $\mathcal{U} = \{ (0, \infty) \}$
• $\mathcal{U} = \{ (0, \infty), \mathbb{R}, (\pi, 27) \}$

Example (Open covers of $\{\frac{1}{n} : n \in \mathbb{N}\}$)

•
$$\mathcal{U} = \{(0, 1), (0, 2), \mathbb{R}, (\pi, 27)\}$$

• $\mathcal{U} = \{(0, 2)\}$
• $\mathcal{U} = \left\{ \left(\frac{1}{n}, \frac{1}{n} + \frac{3}{4}\right) : n = 1, 2, \ldots \right\}$

Example (Open covers of [0, 1])

•
$$\mathcal{U} = \{(-2,2)\}$$

• $\mathcal{U} = \{(-\frac{1}{2},\frac{1}{2}), (0,2)\}$
• $\mathcal{U} = \{(\frac{1}{n},2) : n = 1, 2, ...\} \cup \{(-\frac{1}{2},\frac{1}{2})\}$

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 17 Topology of ℝ VI Friday 20 October 2017

- Assignment 3 was due at 4:25pm today.
 - Solutions will be posted tonight.
- Tutorials will occur as usual on Monday, but they will just be Q&A to help with last-minute questions before the test. Tuesday tutorials are CANCELLED this week.
- Math 3A03 Test #1:
 - Monday 23 Oct 2017 at 7:00pm in MDCL 1102
 - (room is booked for 90 minutes; you should not feel rushed)
 - Question sheets for 2016 tests are now posted on the course wiki.
 - Bring your student ID, pens, pencils/erasers.
 - Structure of test will be described today.

Definition (Heine-Borel Property)

A set $E \subseteq \mathbb{R}$ is said to have the **Heine-Borel property** if every open cover of E can be reduced to a finite subcover. That is, if \mathcal{U} is an open cover of E, then there exists a finite subfamily $\{U_1, U_2, \ldots, U_n\} \subseteq \mathcal{U}$, such that $E \subseteq U_1 \cup U_2 \cup \cdots \cup U_n$.

When does any open cover of a set E have a <u>finite</u> subcover?

Theorem (Heine-Borel Theorem)

A set $E \subseteq \mathbb{R}$ has the Heine-Borel property iff E is both closed and bounded.

(Textbook (TBB) pp. 249-250)

Definition (Compact Set)

A set $E \subseteq \mathbb{R}$ is said to be **compact** if it has any of the following equivalent properties:

- **1** *E* is closed and bounded.
- **2** *E* has the Bolzano-Weierstrass property.
- **3** *E* has the Heine-Borel property.

<u>Note</u>: In spaces other than \mathbb{R} , these three properties are <u>not</u> necessarily equivalent. Usually the Heine-Borel property is taken as the definition of compactness.

Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it is <u>not</u> closed or <u>not</u> bounded.

(solution on board)

Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it does <u>not</u> have the Bolzano-Weierstrass property.

(solution on board)

Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it does <u>not</u> have the Heine-Borel property.

(solution on board)

Example (Classic <u>non-trivial</u> compactness argument)

Let *E* be a compact subset of \mathbb{R} . Prove that if $f : E \to \mathbb{R}$ is locally bounded on *E* then *f* is bounded on *E*.

(solution on board)

Bolzano-Weierstrass approach: Textbook (TBB) p. 242 Heine-Borel approach: Textbook (TBB) p. 251

Example (Converse of above example)

Let $E \subseteq \mathbb{R}$. If every function $f : E \to \mathbb{R}$ that is locally bounded on E is bounded on E, then E is compact.

(solution on board)

<u>Note</u>: Contrapositive of converse is: If $E \subseteq \mathbb{R}$ is <u>not</u> compact then $\exists f : E \to \mathbb{R} \) \ f$ is locally bounded on E but <u>not</u> bounded on E.

Complements and Closures problem

Example

How many distinct sets can be obtained from E = [0, 1] by applying the complement and closure operations?

Consider this sequence of sets: $E_1 = [0, 1]$, $E_2 = E_1^c = (-\infty, 0) \cup (1, \infty)$, $E_3 = \overline{E_2} = (-\infty, 0] \cup [1, \infty)$, $E_4 = E_3^c = (0, 1)$, $E_5 = \overline{E_4} = E_1$.

Does this prove the answer is 4?

Extra Challenge Problem

If $E \subseteq \mathbb{R}$, how many distinct sets can be obtained by taking complements or closures of *E* and its successors? Put another way, if $\{E_n\}$ is a sequence of sets produced by taking the complement or closure of the previous set, how many distinct sets can such a sequence contain? If the answer is finite, find a set *E* that generates the maximum number in this way.

Test #1

What you need to know:

- Everything discussed in class, including all definitions/concepts and theorems/lemmas/corollaries.
- Everything in assignments and solutions to assignments. Make sure you fully understand all the solutions to all the problems in all the assignments.
- Most—but <u>not all</u>—of the material that you are responsible for is covered in chapters 1, 2 and 4 of the textbook. You are <u>not</u> responsible for material in the textbook that was not covered in lectures or assignments.
- It is essential that you understand how to use the definitions and theorems to construct proofs.

Test #1

Other comments:

- You will <u>not</u> be asked to list all the axioms for the the real number system. BUT, you must be able to state the *completeness axiom* concerning least upper bounds.
- You should do last year's Test #1 for practice.
- There are many additional problems that would be good to try for practice in chapters 1, 2 and 4 of the textbook.
- Structure of the test:
 - Question 1 is the same as last year.
 - Questions 2, 3 and 4 are different types of multiple choice questions, e.g., "TRUE" or "FALSE"
 - or "Always TRUE", "Sometimes TRUE" or "Never TRUE".
 - Questions 5 and 6 and tables to fill in.
 - Questions 7, 8 and 9 require proofs.

Stud	lont	Name:	

Student Number:

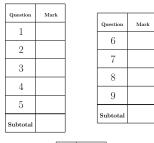
Mathematics 3A03 — Real Analysis I

TERM TEST #1 - 23 October 2017

Duration: 90 minutes

Notes:

- · No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of 8 pages (*i.e.*, 4 double-sided pages). There are 9 questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. The final page is blank to provide extra space if needed.
- The first 6 questions do not require any justification for your answers. For these, you
 will be assessed on your answers only. Do <u>not</u> justify your answers to these questions.
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50.



Total	

Student Name: _____

Student Number:

Mathematics 3A03 — Real Analysis I

TERM TEST #1-23 October 2017

Duration: 90 minutes

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of 8 pages (*i.e.*, 4 double-sided pages). There are 9 questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. The final page is blank to provide extra space if needed.
- The first 6 questions do not require any justification for your answers. For these, you will be assessed on your answers only. *Do <u>not</u> justify your answers to these questions.*
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50.

