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Topology of R

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Intervals

a ba ba ba ba ba c dc dc dc dc dc e fe fe fe fe fe

Open interval:
(a, b) = {x : a < x < b}

Closed interval:
[c , d ] = {x : c ≤ x ≤ d}

Half-open interval:

(e, f ] = {x : e < x ≤ f }

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Interior point

a ba ba ba ba ba x − c x x + cx − c x x + cx − c x x + cx − c x

Definition (Interior point)

If E ⊆ R then x is an interior point of E if x lies in an open
interval that is contained in E , i.e., ∃c > 0 such that
(x − c , x + c) ⊂ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Interior point examples

Set E Interior points?

(−1, 1) Every point

[0, 1] Every point except the endpoints

N @

R Every point

Q @

(−1, 1) ∪ [0, 1] Every point except 1

(−1, 1) \ {12} Every point

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Neighbourhood

a ba ba ba ba ba xxxxxxxxxxx

Definition (Neighbourhood)

A neighbourhood of a point x ∈ R is an open interval containing
x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Deleted neighbourhood

a ba ba ba ba ba xxxxxxxxxxx

Definition (Deleted neighbourhood)

A deleted neighbourhood of a point x ∈ R is a set formed by
removing x from a neighbourhood of x .

(a, b) \ {x}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Isolated point

a1 b1a1 b1a1 b1a1 b1a1 b1a1 a2 b2a2 b2a2 b2a2 b2a2 b2a2 x − c x x + cx − c x x + cx − c x x + cx − c x

E = (a1, b1) ∪ [a2, b2) ∪ {x}

Definition (Isolated point)

If x ∈ E ⊆ R then x is an isolated point of E if there is a
neighbourhood of x for which the only point in E is x itself, i.e.,
∃c > 0 such that (x − c , x + c) ∩ E = {x}.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Isolated point examples

Set E Isolated points?

(−1, 1) @

[0, 1] @

N Every point

R @

Q @

(−1, 1) ∪ [0, 1] @

(−1, 1) \ {12} @

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫
M

dω =

∫
∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 13
Topology of R II

Wednesday 4 October 2017

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Last time. . .

Concepts associated with sets of real numbers:

Countable set

Interval

Neighbourhood

Deleted neighbourhood

Interior point

Isolated point

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Accumulation point

0 0.25 0.5 0.75 1

E =
{

1− 1

n
: n ∈ N

}
Definition (Accumulation Point or Limit Point)

If E ⊆ R then x is an accumulation point or limit point of E if
every neighbourhood of x contains infinitely many points of E ,

i.e., ∀c > 0 (x − c , x + c) ∩ (E \ {x}) 6= ∅ .

Notes:

It is possible but not necessary that x ∈ E .

The shorthand condition is equivalent to saying that every
deleted neighbourhood of x contains at least one point of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Accumulation point examples

Set E Accumulation points?

(−1, 1) [−1, 1]

[0, 1] [0, 1]

N @

R R

Q R

(−1, 1) ∪ [0, 1] [−1, 1]

(−1, 1) \ {12} [−1, 1]{
1− 1

n : n ∈ N
}
{1}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Boundary point

Definition (Boundary Point)

If E ⊆ R then x is a boundary point of E if every neighbourhood
of x contains at least one point of E and at least one point not in
E , i.e.,

∀c > 0 (x − c , x + c) ∩ E 6= ∅
∧ (x − c , x + c) ∩ (R \ E ) 6= ∅ .

Note: It is possible but not necessary that x ∈ E .

Definition (Boundary)

If E ⊆ R then the boundary of E , denoted ∂E , is the set of all
boundary points of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Boundary point examples

Set E Boundary points?

(−1, 1) {−1, 1}
[0, 1] {0, 1}
N N

R @

Q R

(−1, 1) ∪ [0, 1] {−1, 1}
(−1, 1) \ {12} {−1, 12 , 1}{
1− 1

n : n ∈ N
} {

1− 1
n : n ∈ N

}
∪ {1}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Closed set

Definition (Closed set)

A set E ⊆ R is closed if it contains all of its accumulation points.

Definition (Closure of a set)

If E ⊆ R and E ′ is the set of accumulation points of E then
E = E ∪ E ′ is the closure of E .

Note: If the set E has no accumulation points, then E is closed
because there are no accumulation points to check.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Open set

Definition (Open set)

A set E ⊆ R is open if every point of E is an interior point.

Definition (Interior of a set)

If E ⊆ R then the interior of E , denoted E ◦ or E ◦, is the set of all
interior points of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Examples

Set E Closed? Open? E E ◦ ∂E

(−1, 1) NO YES [−1, 1] E {−1, 1}
[0, 1] YES NO E (0, 1) {0, 1}
N YES NO N ∅ N

R YES YES R R ∅

∅

Q

(−1, 1) ∪ [0, 1]

(−1, 1) \ {12}{
1− 1

n : n ∈ N
}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫
M

dω =

∫
∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 14
Topology of R III

Friday 6 October 2017

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is due on Friday 20 Oct 2017 at 4:25pm
(remember cover sheet!)

Math 3A03 Test #1
Monday 23 Oct 2017 at 7:00pm in MDCL 1102

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://lalashan.mcmaster.ca/theobio/3A03/index.php/Assignments
http://library.mcmaster.ca/cavs/class-dir/mdcl-1102
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Examples

Set E Closed? Open? E E ◦ ∂E

(−1, 1) NO YES [−1, 1] E {−1, 1}
[0, 1] YES NO E (0, 1) {0, 1}
N YES NO N ∅ N

R YES YES R R ∅

∅ YES YES ∅ ∅ ∅

Q NO NO R ∅ R

(−1, 1) ∪ [0, 1] NO NO [−1, 1] (−1, 1) {−1, 1}
(−1, 1) \ {12} NO YES [−1, 1] E {−1, 12 , 1}{
1− 1

n : n ∈ N
}

NO NO E ∪ {1} ∅ E ∪ {1}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Component intervals of open sets

What does the most general open set look like?

Theorem (Component intervals)

If G is an open subset of R and G 6= ∅ then there is a unique
(possibly finite) sequence of disjoint open intervals {(an, bn)} such
that

G = (a1, b1) ∪ (a2, b2) ∪ · · · ∪ (an, bn) ∪ · · · ,

i.e., G =
∞⋃
n=1

(an, bn) .

The open intervals (an, bn) are said to be the component
intervals of G.

(Textbook (TBB) Theorem 4.15, p. 231)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Component intervals of open sets

Main ideas of proof of component intervals theorem:

x ∈ G =⇒ x is an interior point of G =⇒
some neighbourhood of x is contained in G ,
i.e., ∃c > 0 such that (x − c , x + c) ⊆ G
∃ a largest neighbourhood of x that is contained in G : this
largest neighbourhood is Ix = (α, β), where

α = inf{a : (a, x ] ⊂ G}, β = sup{b : [x , b) ⊂ G}

Ix contains a rational number, i.e., ∃r ∈ Ix ∩Q

∴ We can index all the intervals Ix by rational numbers

∴ There are are most countably many intervals that make up
G (i.e., G is the union of a sequence of intervals)

We can choose a disjoint subsequence of these intervals whose
union is all of G (see proof in textbook for details).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Open vs. Closed Sets

Definition (Complement of a set of real numbers)

If E ⊆ R then the complement of E is the set

E c = {x ∈ R : x /∈ E} .

Theorem (Open vs. Closed)

If E ⊆ R then E is open iff E c is closed.

(Textbook (TBB) Theorem 4.16)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Open vs. Closed Sets

Theorem (Properties of open sets of real numbers)

1 The sets R and ∅ are open.

2 Any intersection of a finite number of open sets is open.

3 Any union of an arbitrary collection of open sets is open.

4 The complement of an open set is closed.

(Textbook (TBB) Theorem 4.17)

Theorem (Properties of closed sets of real numbers)

1 The sets R and ∅ are closed.

2 Any union of a finite number of closed sets is closed.

3 Any intersection of an arbitrary collection of closed sets is closed.

4 The complement of a closed set is open.

(Textbook (TBB) Theorem 4.18)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫
M

dω =

∫
∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 15
Topology of R IV

Monday 16 October 2017

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is due this Friday 20 Oct 2017 at 4:25pm
(remember cover sheet!)

Math 3A03 Test #1, one week from today,
Monday 23 Oct 2017 at 7:00pm in MDCL 1102
(room is booked for 90 minutes; you should not feel rushed)

Math 3A03 Final Exam: Thurs 21 Dec 2017, 4:00pm–6:30pm

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://lalashan.mcmaster.ca/theobio/3A03/index.php/Assignments
http://library.mcmaster.ca/cavs/class-dir/mdcl-1102
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Concepts covered recently

Countable set

Interval

Neighbourhood

Deleted neighbourhood

Interior point

Isolated point

Accumulation point

Boundary point

Boundary

Closed set

Closure

Open set

Interior

Complement

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

Definition (Bounded function)

A real-valued function f is bounded on the set E if there exists
M > 0 such that |f (x)| ≤ M for all x ∈ E .

(i.e., the function f is bounded on E iff {f (x) : x ∈ E} is a bounded set.)

Note: This is a global property because there is a single bound M
associated with the entire set E .

Example

The function f (x) = 1/(1 + x2) is bounded on R. e.g., M = 1.

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

f(
x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

f (x) =
1

x

f (x) = 1/x is not bounded on the interval E = (0, 1).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

x − δx x x + δx

f (x) =
1

x

f (x) = 1/x is locally bounded on the interval E = (0, 1),
i.e., ∀x ∈ E , ∃δx ,Mx > 0 )– |f (t)| ≤ Mx ∀t ∈ (x − δx , x + δx).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

Definition (Locally bounded at a point)

A real-valued function f is locally bounded at the point x if there
is a neighbourhood of x in which f is bounded, i.e., there exists
δx > 0 and Mx > 0 such that |f (t)| ≤ Mx for all
t ∈ (x − δx , x + δx).

Definition (Locally bounded on a set)

A real-valued function f is locally bounded on the set E if f is
locally bounded at each point x ∈ E .

Note: The size of the neighbourhood (δx) and the local bound
(Mx) depend on the point x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

Example (Function that is not even locally bounded)

Give an example of a function that is defined on the interval (0, 1)
but is not locally bounded on (0, 1).

(solution on board)

Example (Function that is a mess near 0)

Give an example of a function f (x) that is defined everywhere, yet
in any neighbourhood of the origin there are infinitely many points
at which f is not locally bounded.

(solution on board)

Extra Challenge Problem: Is there a function f : R→ R that is not
locally bounded anywhere?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Local vs. Global properties

What condition(s) rule out such pathological behaviour?

When does a property holding locally (near any given point in
a set) imply that it holds globally (for the set as a whole)?

For example: What condition(s) must a set E ⊆ R satisfy in
order that a function f that is locally bounded on E is
necessarily bounded on E?

We will see that the condition we are seeking is that the set E
must be “compact” . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Recall the Bolzano-Weierstrass theorem, which we proved when
investigating sequences of real numbers:

Theorem (Bolzano-Weierstrass theorem for sequences)

Every bounded sequence in R contains a convergent subsequence.

For any set of real numbers, we define:

Definition (Bolzano-Weierstrass property)

A set E ⊆ R is said to have the Bolzano-Weierstrass property iff
any sequence of points chosen from E has a subsequence that
converges to a point in E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Theorem (Bolzano-Weierstrass theorem for sets)

A set E ⊆ R has the Bolzano-Weierstrass property iff E is closed
and bounded.

(solution on board) (Textbook (TBB) Theorem 4.21, p. 241)

Notes:

Why do we need both closed and bounded? Why didn’t we need
closed in the original version of the Bolzano-Weierstrass theorem
(for sequences)?

Because we didn’t require the limit of the convergent
subsequence to be in the set!

The Bolzano-Weierstrass theorem for sets implies that “If E ⊆ R is
bounded then its closure E has the Bolzano-Weierstrass property”.

The original Bolzano-Weierstrass theorem for sequences is a
special case of this statement because any convergent
sequence together with its limit is a closed set.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 16
Topology of R V

Wednesday 18 October 2017

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Niky Hristov’s last Monday office hour will be on 23 October,
before the midterm test. For the remainder of the term,
Niky’s office hours will change to Tuesdays 1:30–3:30pm.

Assignment 3 is due this Friday 20 Oct 2017 at 4:25pm
(remember cover sheet!)

Math 3A03 Test #1,
Monday 23 Oct 2017 at 7:00pm in MDCL 1102
(room is booked for 90 minutes; you should not feel rushed)

Question sheets for 2016 tests are now posted on the course
wiki.

Math 3A03 Final Exam: Thurs 21 Dec 2017, 4:00pm–6:30pm

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://lalashan.mcmaster.ca/theobio/3A03/index.php/Assignments
http://library.mcmaster.ca/cavs/class-dir/mdcl-1102
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Bijections

The terms one-to-one (injective), onto (surjective), and one-to-one
correspondence (bijection) are giving some students trouble.

(Recall, we used bijection in our definition of countable.)

Let’s take a step back and recall:

When we define a function, we need three things:

the domain, i.e., the set to which the function is applied;
the codomain, i.e., the target set where the values of the
function lie;
a rule for taking elements of the domain into the codomain.

If we write f : A→ B then A is the domain and B is the
codomain.

The range of a function is the subset of the codomain
consisting of all values of the function applied to the domain.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Bijections

Example

Let f (x) = x2, x ∈ R.

Is f onto R?

Is f one-to-one on R? On any interval?

Is f a bijection?

Example

Find a bijection between [0,∞) to [1,∞).

Find a different bijection between [0,∞) to [1,∞).

Extra Challenge Problem:
Construct a bijection between [0, 1] and (0, 1).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Definition (Open Cover)

Let E ⊆ R and let U be a family of open intervals. If for every
x ∈ E there exists at least one interval U ∈ U such that x ∈ U, i.e.,

E ⊆
⋃
{U : U ∈ U} ,

then U is called an open cover of E .

Example (Open covers of N)

Give examples of open covers of N.

U =
{(

n − 1
2 , n + 1

2

)
: n = 1, 2, . . .

}
U = {(0,∞)}
U = {(0,∞), R, (π, 27)}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Example (Open covers of { 1n : n ∈ N})

U = {(0, 1), (0, 2), R, (π, 27)}
U = {(0, 2)}
U =

{(
1
n ,

1
n + 3

4

)
: n = 1, 2, . . .

}
Example (Open covers of [0, 1])

U = {(−2, 2)}
U = {(−1

2 ,
1
2), (0, 2)}

U =
{(

1
n , 2
)

: n = 1, 2, . . .
}
∪
{(
− 1

2 ,
1
2

)}

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics
and Statistics∫
M

dω =

∫
∂M

ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 17
Topology of R VI

Friday 20 October 2017

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 was due at 4:25pm today.

Solutions will be posted tonight.

Tutorials will occur as usual on Monday, but they will just be
Q&A to help with last-minute questions before the test.
Tuesday tutorials are CANCELLED this week.

Math 3A03 Test #1:
Monday 23 Oct 2017 at 7:00pm in MDCL 1102
(room is booked for 90 minutes; you should not feel rushed)

Question sheets for 2016 tests are now posted on the course
wiki.

Bring your student ID, pens, pencils/erasers.

Structure of test will be described today.

Instructor: David Earn Mathematics 3A03 Real Analysis I

http://library.mcmaster.ca/cavs/class-dir/mdcl-1102
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Compactness

Definition (Heine-Borel Property)

A set E ⊆ R is said to have the Heine-Borel property if every
open cover of E can be reduced to a finite subcover. That is, if U
is an open cover of E , then there exists a finite subfamily
{U1,U2, . . . ,Un} ⊆ U , such that E ⊆ U1 ∪ U2 ∪ · · · ∪ Un.

When does any open cover of a set E have a finite subcover?

Theorem (Heine-Borel Theorem)

A set E ⊆ R has the Heine-Borel property iff E is both closed and
bounded.

(Textbook (TBB) pp. 249–250)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Definition (Compact Set)

A set E ⊆ R is said to be compact if it has any of the following
equivalent properties:

1 E is closed and bounded.

2 E has the Bolzano-Weierstrass property.

3 E has the Heine-Borel property.

Note: In spaces other than R, these three properties are not
necessarily equivalent. Usually the Heine-Borel property is taken as
the definition of compactness.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Example

Prove that the interval (0, 1] is not compact by showing that it is
not closed or not bounded.

(solution on board)

Example

Prove that the interval (0, 1] is not compact by showing that it
does not have the Bolzano-Weierstrass property.

(solution on board)

Example

Prove that the interval (0, 1] is not compact by showing that it
does not have the Heine-Borel property.

(solution on board)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness

Example (Classic non-trivial compactness argument)

Let E be a compact subset of R. Prove that if f : E → R is locally
bounded on E then f is bounded on E .

(solution on board)

Bolzano-Weierstrass approach: Textbook (TBB) p. 242

Heine-Borel approach: Textbook (TBB) p. 251

Example (Converse of above example)

Let E ⊆ R. If every function f : E → R that is locally bounded on
E is bounded on E , then E is compact.

(solution on board)

Note: Contrapositive of converse is: If E ⊆ R is not compact then
∃f : E → R )– f is locally bounded on E but not bounded on E . •

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Complements and Closures problem

Example

How many distinct sets can be obtained from E = [0, 1] by
applying the complement and closure operations?

Consider this sequence of sets: E1 = [0, 1],
E2 = E c

1 = (−∞, 0) ∪ (1,∞), E3 = E2 = (−∞, 0] ∪ [1,∞),
E4 = E c

3 = (0, 1), E5 = E4 = E1.

Does this prove the answer is 4?

Extra Challenge Problem
If E ⊆ R, how many distinct sets can be obtained by taking
complements or closures of E and its successors? Put another way,
if {En} is a sequence of sets produced by taking the complement
or closure of the previous set, how many distinct sets can such a
sequence contain? If the answer is finite, find a set E that
generates the maximum number in this way.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Test #1

What you need to know:

Everything discussed in class, including all
definitions/concepts and theorems/lemmas/corollaries.

Everything in assignments and solutions to assignments.
Make sure you fully understand all the solutions to all the
problems in all the assignments.

Most—but not all—of the material that you are responsible
for is covered in chapters 1, 2 and 4 of the textbook.
You are not responsible for material in the textbook that was
not covered in lectures or assignments.

It is essential that you understand how to use the definitions
and theorems to construct proofs.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Test #1

Other comments:

You will not be asked to list all the axioms for the the real
number system. BUT, you must be able to state the
completeness axiom concerning least upper bounds.

You should do last year’s Test #1 for practice.

There are many additional problems that would be good to
try for practice in chapters 1, 2 and 4 of the textbook.

Structure of the test:

Question 1 is the same as last year.
Questions 2, 3 and 4 are different types of multiple choice
questions, e.g., “TRUE” or “FALSE”
or “Always TRUE”, “Sometimes TRUE” or “Never TRUE”.
Questions 5 and 6 and tables to fill in.
Questions 7, 8 and 9 require proofs.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Student Name: Student Number:

Mathematics 3A03 — Real Analysis I

TERM TEST #1 — 23 October 2017

Duration: 90 minutes

Notes:

• No calculators, notes, scrap paper, or aids of any kind are permitted.

• This test consists of 8 pages (i.e., 4 double-sided pages). There are 9 questions
in total. Bring any discrepancy to the attention of your instructor or invigilator.

• All questions are to be answered on this test paper. The final page is blank to provide
extra space if needed.

• The first 6 questions do not require any justification for your answers. For these, you
will be assessed on your answers only. Do not justify your answers to these questions.

• Always write clearly. An answer that cannot be deciphered cannot be marked.

• The marking scheme is indicated in the margin. The maximum total mark is 50.

Question Mark

1

2

3

4

5

Subtotal

Question Mark

6

7

8

9

Subtotal

Total

Page 1 of 8

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Student Name: Student Number:

Mathematics 3A03 — Real Analysis I

TERM TEST #1 — 23 October 2017

Duration: 90 minutes

Notes:

• No calculators, notes, scrap paper, or aids of any kind are permitted.

• This test consists of 8 pages (i.e., 4 double-sided pages). There are 9 questions
in total. Bring any discrepancy to the attention of your instructor or invigilator.

• All questions are to be answered on this test paper. The final page is blank to provide
extra space if needed.

• The first 6 questions do not require any justification for your answers. For these, you
will be assessed on your answers only. Do not justify your answers to these questions.

• Always write clearly. An answer that cannot be deciphered cannot be marked.

• The marking scheme is indicated in the margin. The maximum total mark is 50.
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