Mathematics 3A03 Real Analysis I Fall 2019 ASSIGNMENT 6 (Solutions)

This assignment was due on Tuesday 3 December 2019 at 2:25pm via crowdmark.

- 1. Recall from class that we defined a **real number** to be a subset $\alpha \subseteq \mathbb{Q}$ with the following four properties:
 - 1. $\forall x \in \alpha$, if $y \in \mathbb{Q}$ and y < x, then $y \in \alpha$;
 - 2. $\alpha \neq \emptyset$;
 - 3. $\alpha \neq \mathbb{Q};$
 - 4. there is no greatest element in α : $\forall x \in \alpha, \exists y \in \alpha \text{ so that } y > x$.

Assume α and β are real numbers, and define their sum $\alpha + \beta$ to be

$$\alpha + \beta = \{a + b \mid a \in \alpha, b \in \beta\}.$$

Use the formal definition above to show that $\alpha + \beta$ is a real number.

Solution: First we must show that $\alpha + \beta \subseteq \mathbb{Q}$. Since $\alpha \subseteq \mathbb{Q}$ and $\beta \subseteq \mathbb{Q}$, for any $a \in \alpha$ and $b \in \beta$, we have $a + b \in \mathbb{Q}$, and hence $\alpha + \beta \subseteq \mathbb{Q}$.

- **Property 1:** If $x \in \alpha + \beta$ then x = a + b for some $a \in \alpha$ and $b \in \beta$. Suppose $y \in \mathbb{Q}$ and y < x. We must show $y \in \alpha + \beta$. To see this, write y = a + (y a), and note that $y a \in \mathbb{Q}$ since $y \in \mathbb{Q}$ and $a \in \mathbb{Q}$. But $y < x \implies y a < x a$; therefore, since $x a = b \in \beta$ and β is a real number, $y a \in \beta$. Thus, $a \in \alpha$, $y a \in \beta$ and y = a + (y a), which implies $y \in \alpha + \beta$.
- **Property 2:** Since α and β are real numbers, we know $\alpha \neq \emptyset$ and $\beta \neq \emptyset$. Therefore, there exist $a \in \alpha$ and $b \in \beta$, which implies $a + b \in \alpha + \beta$, so $\alpha + \beta \neq \emptyset$.
- **Property 3:** Since $\alpha \neq \mathbb{Q}$ and $\beta \neq \mathbb{Q}$, there exist $a \in \mathbb{Q} \setminus \alpha$ and $b \in \mathbb{Q} \setminus \beta$. Moreover, we must have a > x for all $x \in \alpha$ and b > y for all $y \in \beta$ (otherwise, Property 1 would be violated). Therefore, for all $x \in \alpha$ and all $y \in \beta$, a + b > x + y. But any $c \in \alpha + \beta$ can be written c = x + y, where $x \in \alpha$ and $y \in \beta$; hence a + b > c for all $c \in \alpha + \beta$. Thus $a + b \in \mathbb{Q} \setminus \alpha + \beta$, which establishes that $\alpha + \beta \neq \mathbb{Q}$.
- **Property 4:** Let $x \in \alpha + \beta$. Then x = a + b for some $a \in \alpha$ and $b \in \beta$. Since $a \in \alpha$ and α is a real number, there exists $a' \in \alpha$ such that a' > a. Similarly, there exists $b' \in \beta$ such that b' > b. Let y = a' + b'. Then $y \in \alpha + \beta$ since $a' \in \alpha$ and $b' \in \beta$; in addition, since a' > a and b' > b, y = a' + b' > a + b = x. Therefore, $\alpha + \beta$ has no largest element.

Thus, $\alpha + \beta$ is a real number.

2. Prove that the series

$$\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)} \,,$$

converges uniformly on \mathbb{R} .

Solution: Write

$$f_n(x) = \frac{x}{n(1+nx^2)}.$$

Then the series in question is $\sum_{n=1}^{\infty} f_n(x)$. Note that f_n is twice (in fact, infinitely) differentiable and

$$f'_n(x) = \frac{1 - nx^2}{n(1 + nx^2)}, \qquad f''_n(x) = -2x \frac{3 - nx^2}{(1 + nx^2)^3}.$$

Thus,

$$f'_n(x) = 0 \iff x = \pm \frac{1}{\sqrt{n}}, \qquad f''_n(1/\sqrt{n}) < 0, \qquad f''_n(-1/\sqrt{n}) > 0,$$

so $x = 1/\sqrt{n}$ is the global maximum point and $x = -1/\sqrt{n}$ is the global minimum point of $f_n(x)$; moreover,

$$f_n\left(\pm\frac{1}{\sqrt{n}}\right) = \pm\frac{1}{2n^{3/2}}.$$

Consequently,

$$|f_n(x)| \le \frac{1}{2n^{3/2}} \qquad \forall x \in \mathbb{R}.$$

Therefore, let

$$M_n = \frac{1}{2n^{3/2}},$$

and note that $\sum_{n=1}^{\infty} M_n$ converges (by the integral test). By the Weierstrass *M*-test, $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on \mathbb{R} .

Version of December 2, 2019 @ 17:01