## Mathematics 3A03 Real Analysis I

Fall 2019 ASSIGNMENT 6 (Solutions)
This assignment was due on Tuesday 3 December 2019 at 2:25pm via crowdmark.

1. Recall from class that we defined a real number to be a subset $\alpha \subseteq \mathbb{Q}$ with the following four properties:
2. $\forall x \in \alpha$, if $y \in \mathbb{Q}$ and $y<x$, then $y \in \alpha$;
3. $\alpha \neq \varnothing$;
4. $\alpha \neq \mathbb{Q}$;
5. there is no greatest element in $\alpha: \forall x \in \alpha, \exists y \in \alpha$ so that $y>x$.

Assume $\alpha$ and $\beta$ are real numbers, and define their sum $\alpha+\beta$ to be

$$
\alpha+\beta=\{a+b \mid a \in \alpha, b \in \beta\} .
$$

Use the formal definition above to show that $\alpha+\beta$ is a real number.
Solution: First we must show that $\alpha+\beta \subseteq \mathbb{Q}$. Since $\alpha \subseteq \mathbb{Q}$ and $\beta \subseteq \mathbb{Q}$, for any $a \in \alpha$ and $b \in \beta$, we have $a+b \in \mathbb{Q}$, and hence $\alpha+\beta \subseteq \mathbb{Q}$.

Property 1: If $x \in \alpha+\beta$ then $x=a+b$ for some $a \in \alpha$ and $b \in \beta$. Suppose $y \in \mathbb{Q}$ and $y<x$. We must show $y \in \alpha+\beta$. To see this, write $y=a+(y-a)$, and note that $y-a \in \mathbb{Q}$ since $y \in \mathbb{Q}$ and $a \in \mathbb{Q}$. But $y<x \Longrightarrow y-a<x-a$; therefore, since $x-a=b \in \beta$ and $\beta$ is a real number, $y-a \in \beta$. Thus, $a \in \alpha, y-a \in \beta$ and $y=a+(y-a)$, which implies $y \in \alpha+\beta$.
Property 2: Since $\alpha$ and $\beta$ are real numbers, we know $\alpha \neq \varnothing$ and $\beta \neq \varnothing$. Therefore, there exist $a \in \alpha$ and $b \in \beta$, which implies $a+b \in \alpha+\beta$, so $\alpha+\beta \neq \varnothing$.
Property 3: Since $\alpha \neq \mathbb{Q}$ and $\beta \neq \mathbb{Q}$, there exist $a \in \mathbb{Q} \backslash \alpha$ and $b \in \mathbb{Q} \backslash \beta$. Moreover, we must have $a>x$ for all $x \in \alpha$ and $b>y$ for all $y \in \beta$ (otherwise, Property 1 would be violated). Therefore, for all $x \in \alpha$ and all $y \in \beta, a+b>x+y$. But any $c \in \alpha+\beta$ can be written $c=x+y$, where $x \in \alpha$ and $y \in \beta$; hence $a+b>c$ for all $c \in \alpha+\beta$. Thus $a+b \in \mathbb{Q} \backslash \alpha+\beta$, which establishes that $\alpha+\beta \neq \mathbb{Q}$.
Property 4: Let $x \in \alpha+\beta$. Then $x=a+b$ for some $a \in \alpha$ and $b \in \beta$. Since $a \in \alpha$ and $\alpha$ is a real number, there exists $a^{\prime} \in \alpha$ such that $a^{\prime}>a$. Similarly, there exists $b^{\prime} \in \beta$ such that $b^{\prime}>b$. Let $y=a^{\prime}+b^{\prime}$. Then $y \in \alpha+\beta$ since $a^{\prime} \in \alpha$ and $b^{\prime} \in \beta$; in addition, since $a^{\prime}>a$ and $b^{\prime}>b, y=a^{\prime}+b^{\prime}>a+b=x$. Therefore, $\alpha+\beta$ has no largest element.

Thus, $\alpha+\beta$ is a real number.
2. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{x}{n\left(1+n x^{2}\right)}
$$

converges uniformly on $\mathbb{R}$.

Solution: Write

$$
f_{n}(x)=\frac{x}{n\left(1+n x^{2}\right)} .
$$

Then the series in question is $\sum_{n=1}^{\infty} f_{n}(x)$. Note that $f_{n}$ is twice (in fact, infinitely) differentiable and

$$
f_{n}^{\prime}(x)=\frac{1-n x^{2}}{n\left(1+n x^{2}\right)}, \quad f_{n}^{\prime \prime}(x)=-2 x \frac{3-n x^{2}}{\left(1+n x^{2}\right)^{3}}
$$

Thus,

$$
f_{n}^{\prime}(x)=0 \Longleftrightarrow x= \pm \frac{1}{\sqrt{n}}, \quad f_{n}^{\prime \prime}(1 / \sqrt{n})<0, \quad f_{n}^{\prime \prime}(-1 / \sqrt{n})>0
$$

so $x=1 / \sqrt{n}$ is the global maximum point and $x=-1 / \sqrt{n}$ is the global minimum point of $f_{n}(x)$; moreover,

$$
f_{n}\left( \pm \frac{1}{\sqrt{n}}\right)= \pm \frac{1}{2 n^{3 / 2}} .
$$

Consequently,

$$
\left|f_{n}(x)\right| \leq \frac{1}{2 n^{3 / 2}} \quad \forall x \in \mathbb{R}
$$

Therefore, let

$$
M_{n}=\frac{1}{2 n^{3 / 2}},
$$

and note that $\sum_{n=1}^{\infty} M_{n}$ converges (by the integral test). By the Weierstrass $M$-test, $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $\mathbb{R}$.

