
Mathematics 3A03 Real Analysis I
Winter 2025 ASSIGNMENT 5 solutions

Topic: Metric Spaces
Participation deadline: 4 April 2025 at 11:25am

The meaning of the participation deadline is that you must answer the multiple choice
questions on childsmath before that deadline in order to receive participation credit for the
assignment. The childsmath poll that you need to fill in for participation credit will be
activated immediately after the last class before the above deadline.

Assignments in this course are graded only on the basis of participation, which you fulfill
by answering the multiple choice questions on childsmath. You will get the same credit for
any question that you answer, regardless of what your answer is. However, please answer
the questions honestly so we obtain accurate statistics on how the class is doing.

You are encouraged to submit full written solutions on crowdmark. If you do so, you will
not be graded on your work, but you will receive feedback that will hopefully help you to
improve your mathematical skills and to prepare for the midterm test and the final exam.

There is no strict deadline for submitting written work on crowdmark for feedback, but
please try to submit your solutions within a few days of the participation deadline so that
the TA’s work is spread out over the term. If you do not submit your solutions within a few
days of the participation deadline then it may not be feasible for the TA to provide feedback
via crowdmark. However, you can always ask for help with any problem during office hours
with the TA or instructor.

You are encouraged to discuss and work on the problems jointly with your classmates,
but remember that you will be working alone on the test and exam. You should attempt
to solve the problems on your own before brainstorming with classmates, looking online, or
asking the TA or instructor for help.

A full solution means either a proof or disproof of each statement that you are asked to
consider when selecting your multiple choice answers.

Full solutions to the problems will be posted by the instructor. You should read the
solutions only after doing your best to solve the problems, but do make sure to read the
instructor’s solutions carefully and ensure you understand them. If you notice any errors in
the solutions, please report them to the instructor by e-mail.

Enjoy working on these problems!
– David Earn
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1. Suppose x = (x1, . . . , xN) ∈ RN and xn = (xn,1, . . . , xn,N) ∈ RN for each n ∈ N.
Which of the following statements are true for the sequence (xn)n∈N in the metric
space (RN , Euclidean)?

■ xn
n → ∞−−−→ x =⇒ xn,j

n → ∞−−−→ xj in (R,standard) ∀j = 1, 2, . . . , N ;

■ xn
n → ∞−−−→ x ⇐= xn,j

n → ∞−−−→ xj in (R,standard) ∀j = 1, 2, . . . , N ;

□ (xn) never converges.

For any a, b ∈ R, a2 ≤ a2 + b2. Therefore, for each j ∈ {1, 2, . . . , N}, we have

|xj | =
√

x2
j ≤

√√√√ N∑
i=1

x2
i = ∥x∥2 .

Thus, a vector converges in the Euclidean norm exactly when each of its individual coordinates
converges as real numbers (with the standard distance).

2. Let V be an inner product space, with norm ∥v∥ =
√

⟨v, v⟩, v ∈ V . Assume that the
sequences (vn)n∈N, (wn)n∈N are both convergent, vn

n → ∞−−−→ v and wn
n → ∞−−−→ w. Which of

the following statements are true?

■ ⟨vn, wn⟩ n → ∞−−−→ ⟨v, w⟩, in (R,standard);

□ ⟨vn, wn⟩ n → ∞−−−→ ∥v∥ + ∥w∥, in (R,standard);

□ ⟨vn, wn⟩ does not necessarily converge in (R,standard).

The second statement is false: Consider constant sequences vn = (1, 0, . . . , 0) ∀n and wn = (0, 0, . . . , 0) ∀n;
then ⟨vn, wn⟩ = 0 ∀n but ∥v∥ + ∥w∥ = 1 + 0 = 1.
The first statement is true (so the third statement is false). Given ε > 0 we must show ∃N ∈ N such
that, for any n ≥ N , |⟨vn, wn⟩ − ⟨v, w⟩| < ε. To that end, observe that, for any n, we have

|⟨vn, wn⟩ − ⟨v, w⟩| = |⟨vn, wn⟩ − ⟨vn, w⟩ + ⟨vn, w⟩ − ⟨v, w⟩|
= |⟨vn, (wn − w)⟩ + ⟨(vn − v)⟨v, w⟩|
≤ |⟨vn, (wn − w)⟩| + |⟨(vn − v)⟨v, w⟩| (by triangle inequality)
≤ ∥vn∥ ∥wn − w∥ + ∥w∥ ∥vn − v∥ (by Cauchy-Schwarz inequality)

Here, we can make the second term as small as we like because ∥w∥ is a fixed non-negative real number
and vn

n → ∞−−−−→ v. To make the first term above as small as we like, we need the sequence (vn) to be
bounded. But (vn) is necessarily bounded (we proved in class that convergent implies bounded for
sequences in any metric space). Proceeding formally, we know ∃C1 > 0 for which ∥vn∥ ≤ C1 for all
n ∈ N. Let C2 = C1 + ∥w∥. Since vn

n → ∞−−−−→ v and wn
n → ∞−−−−→ w, for any ε > 0, ∃N1, N2 ∈ N such that

d(vn, v) = ∥vn − v∥ <
ε

2C2
, ∀n ≥ N1,

d(wn, w) = ∥wn − w∥ <
ε

2C2
, ∀n ≥ N2.
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Now let N = max{N1, N2}, so both of the above inequalities are true ∀n ≥ N . Then, for all n ≥ N ,

|⟨vn, wn⟩ − ⟨v, w⟩| ≤ ∥vn∥ ∥wn − w∥ + ∥w∥ ∥vn − v∥

≤ C2 (∥wn − w∥ + ∥vn − v∥) <
ε

2 + ε

2 = ε.

Thus, by the definition of the limit, ⟨vn, wn⟩ n → ∞−−−−→ ⟨v, w⟩ in R.

3. In a metric space (M, d), any set with no limit points is:

□ open;

■ closed;

□ neither open nor closed.

In (R, standard, consider any singleton set E = {x}. Then E has no limit points and E is not open.
We proved in class that a set in any metric space is closed iff it contains all its limit points. But if it
has no limit points then it contains all its limit points! Hence any set without limit points is closed.
(It is a good exercise to prove this result without appealing to the theorem proved in class. You will
end up essentially proving that theorem.)

4. By Cn[a, b] we mean the space of n-times continuously differentiable functions on the
closed interval [a, b], i.e., functions that have n derivatives and that the nth derivative
is continuous on [a, b]. For n = 0, we mean C[a, b]. The derivative operator on Cn[a, b]
for n > 0 is defined by (D(f))(x) = f ′(x). The sup norm ∥ · ∥∞ on C[a, b] is still a
norm on Cn[a, b] for n > 0 (why?). If n > 0, we can also define a “derivative norm”,

∥f∥D = ∥f∥∞ + ∥f ′∥∞.

Which of the following statements are true?

□ D : C1[a, b] → C[a, b] is a continuous operator under the sup norm;

■ D : C1[a, b] → C[a, b] is a continuous operator under the derivative norm;

□ D : C1[a, b] → C[a, b] is not a continuous operator under any norm.

If we have a norm on a vector space then it is still a norm on any subspace. Thus, the sup norm,
which is valid on all of C[a, b], is still valid when applied to subspaces with some extra smoothness
condition, in particular on Cn[a, b] for any n > 0.

D : C1[a, b] → C[a, b] is NOT a continuous operator under the SUP norm

We need to show there exists a sequence {fn} ⊂ C1[a, b] such that ∥fn∥∞ → 0, but ∥D(fn)∥∞ ̸→ 0.
Let fn(x) = 1

n sin(nx) on [0, π]. Then f ′
n(x) = cos(nx). Therefore,

∥fn∥∞ = 1
n

n → ∞−−−−→ 0, but ∥f ′
n∥∞ = ∥ cos(nx)∥∞ = 1.

Thus, fn → 0 in the sup norm, but D(fn) = f ′
n ̸→ 0. Hence the derivative operator is not continuous

from C1[a, b] to C[a, b] in the sup norm.
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D : C1[a, b] → C[a, b] IS a continuous operator wrt the DERIVATIVE norm

Now suppose fn
n → ∞−−−−→ f in the derivative norm, i.e.,

∥fn − f∥D = ∥fn − f∥∞ + ∥f ′
n − f ′∥∞

n → ∞−−−−→ 0.

Since norms are non-negative, it follows that ∥fn − f∥∞
n → ∞−−−−→ 0 and ∥f ′

n − f ′∥∞
n → ∞−−−−→ 0. Therefore,

∥D(fn) − D(f)∥∞ = ∥f ′
n − f ′∥∞

n → ∞−−−−→ 0.

Thus, the derivative operator is continuous from (C1[a, b], ∥·∥D) to (C[a, b], ∥·∥∞).

Additional problems

5. (a) Consider f : M → N with domain (M,discrete), and N any metric space (N , ρ).
Show that any such f is continuous.
f is continuous iff for any open U ⊆ N , f−1(U) is open in M. But M is discrete so every set
in M is open. Hence any function f defined on M is continuous, regardless of what the target
space is.

(b) Now suppose f : M → N but the range is (N ,discrete), and (M, d) is a metric
space that is not discrete (where “discrete” means A ⊂ M is both open and closed
iff A = M or A = ∅). Show that if f is continuous then f is a constant function.
Suppose, in order to derive a contradiction, that f is not constant. Then there exist points
x1, x2 ∈ M such that f(x1) ̸= f(x2). Since N has the discrete topology, the singleton {f(x1)} is
open in N , and so the inverse image

f−1({f(x1)})
is open in M by continuity of f . Similarly, f−1({f(x2)}) is open in M. Moreover, since f(x1) ̸=
f(x2), these inverse images are disjoint. More generally, for each y ∈ N , the set

f−1({y})

is open in M, and the collection of these inverse images divides M into pairwise disjoint open
sets. But each f−1({y}) is also the inverse image of a closed set (a singleton in any metric space
is closed), so it is closed. Hence, every inverse image of a singleton, f−1({y}), is both open and
closed. Now, since f is not constant, there are at least two disjoint nonempty open-and-closed
subsets of M, namely f−1({f(x1)}) and f−1({f(x2)}). This contradicts the assumption that M
is not discrete.
Therefore, our assumption that f is not constant must be false. Thus, any continuous function
from a non-discrete metric space into a discrete space must be constant.

6. For a set E in a metric space (M, d), we defined the interior, E◦, to be the set of all
interior points of E. Show that E◦ is the largest open set contained in E.
Hint: Show that E◦ is open, E◦ ⊆ E, and if U is open and U ⊆ E, then U ⊆ E◦.
(E◦ is open) We defined an open set to be a set in which every point is an interior point. So E◦—the
set of all interior points of E—is open by definition.
(E◦ ⊆ E) Suppose x ∈ E◦. Then x is an interior point of E, i.e., there is a ball Bε(x) ⊆ E. In
particular, x ∈ E. So E◦ ⊆ E.
(Maximality: U open and U ⊆ E =⇒ U ⊆ E◦.) Suppose x ∈ U . Since U is open, ∃ε > 0 such that
Bε(x) ⊆ U ⊆ E. Hence x ∈ E◦ by definition. So U ⊆ E◦.
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7. Consider the metric space M = [1, ∞) with d(x, y) =
∣∣∣∣∣1x − 1

y

∣∣∣∣∣. Show that (M, d) is

not complete.
Hint: Show that the sequence xn = n, n ∈ N, is a Cauchy sequence that does not
converge.
You should first check that d really is a metric on M. Given that, and defining (xn) = (n), suppose
m, n ∈ N. WLOG assume m ≥ n, so 0 ≤ m − n ≤ m, which implies 0 ≤ m−n

m ≤ 1. Then

d(xn, xm) =
∣∣∣∣ 1n − 1

m

∣∣∣∣ =
∣∣∣∣m − n

nm

∣∣∣∣ =
∣∣∣∣m − n

m

∣∣∣∣ 1
n

≤ 1
n

,

which can be made arbitrarily small by taking n sufficiently large. Hence (xn) is a Cauchy sequence
wrt d. But xn

n → ∞−−−−→ ∞, so (xn) does not converge. Therefore, (M, d) is not complete.

8. Prove or disprove: An inner product space is necessarily complete.
The statement is FALSE. An inner product space is not necessarily complete; completeness is an
additional property. As noted in class, a complete inner product space is called a Hilbert space.
Here are two instructive counterexamples.

(1) Let V = C[0, 1], the space of continuous real-valued functions on [0, 1]. Define the Euclidean (L2)
inner product via

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx,

with norm ∥f∥ =
(∫ 1

0 |f(x)|2 dx
)1/2

. This makes V into an inner product space.

Now consider the sequence fn(x) = xn. Each fn ∈ C[0, 1], and:

∥fn − fm∥2 =
∫ 1

0
|xn − xm|2 dx = 1

2m + 1 − 2
m + n + 1 + 1

2n + 1
n,m → ∞−−−−−→ 0,

so {fn} is a Cauchy sequence in the L2 norm.
However, the pointwise limit of fn(x) is the function:

f(x) =
{

0, 0 ≤ x < 1
1, x = 1

which is not continuous on [0, 1], and hence f /∈ V . Therefore, {fn} does not converge in V , even
though it is Cauchy. So V is not complete.

(2) The space ℓ2 of square-summable sequences is defined as

ℓ2 =
{

x = (xn) ∈ R∞ :
∞∑

n=1
|xn|2 < ∞

}
,

with inner product

⟨x, y⟩ =
∞∑

n=1
xnyn, and norm ∥x∥ =

( ∞∑
n=1

|xn|2
)1/2

.

Now let V ⊂ ℓ2 be the space of all sequences with only finitely many nonzero terms:

V =
{

x = (xn) ∈ ℓ2 : xn = 0 for all but finitely many n
}

.
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This space is an inner product space under the same inner product. Now define the sequence:

x(k) =
(
1, 1

2 , 1
3 , . . . , 1

k , 0, 0, . . .
)

∈ V.

Each x(k) ∈ V since it has only finitely many nonzero terms. Now compute:

∥x(k) − x(m)∥2 =
max(k,m)∑

n=min(k,m)+1

1
n2

k,m → ∞−−−−−→ 0.

So {x(k)} is Cauchy in the ℓ2 norm. Its limit is the infinite sequence

x =
(
1, 1

2 , 1
3 , . . .

)
,

which belongs to ℓ2 (since
∑

1/n2 < ∞), but not to V (since it has infinitely many nonzero terms).
Hence, {x(k)} is a Cauchy sequence in V , but its limit lies outside V , so V is not complete.

Note: The space V in this example is isomorphic to the space P [0, 1] of polynomials discussed in
class.

9. Prove or disprove: If (M, d) is a complete metric space and F ⊂ M is a closed subset,
then (F, d) is a complete metric space.
The statement is TRUE. Let (xn) be a Cauchy sequence in F . Since F ⊂ M and M is complete,
∃x ∈ M such that xn → x. But F is closed, so it contains all its limit points. In particular, it must
contain x. Hence (F, d) is complete.

10. Verify the following inequalities, which relate the various p-norms on Rn,

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n ∥x∥∞ , and ∥x∥1 ≤
√

n ∥x∥2 .

Let x = (x1, x2, . . . , xn) ∈ Rn and recall

∥x∥∞ = max
1≤j≤n

|xj |, ∥x∥2 =

 n∑
j=1

|xj |2
1/2

, ∥x∥1 =
n∑

j=1
|xj |.

1. ∥x∥∞ ≤ ∥x∥2

Each coordinate satisfies |xj |2 ≤
∑n

k=1 |xk|2, so:

|xj | ≤

(
n∑

k=1
|xk|2

)1/2

= ∥x∥2 for all j.

Hence,
∥x∥∞ = max

j
|xj | ≤ ∥x∥2 .

2. ∥x∥2 ≤ ∥x∥1

For each j, we have |xj | ≤ ∥x∥1, so |xj |2 ≤ |xj | · ∥x∥1. Summing over j,

n∑
j=1

|xj |2 ≤
n∑

j=1
|xj | · ∥x∥1 = ∥x∥2

1 .
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Taking square roots of both sides, we obtain:

∥x∥2 ≤ ∥x∥1 .

3. ∥x∥1 ≤ n ∥x∥∞

Since |xj | ≤ ∥x∥∞ for each j, summing gives:

∥x∥1 =
n∑

j=1
|xj | ≤

n∑
j=1

∥x∥∞ = n ∥x∥∞ .

4. ∥x∥1 ≤
√

n ∥x∥2

Apply Cauchy–Schwarz to the vectors uj = |xj |, vj = 1:

n∑
j=1

|xj | ≤

 n∑
j=1

|xj |2
1/2

·

 n∑
j=1

12

1/2

= ∥x∥2 ·
√

n.

Summarizing, we have

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n ∥x∥∞ , and ∥x∥1 ≤
√

n ∥x∥2 ,

as requried.

Balls in the norm ∥·∥p are often written Bp
r (x). Show that the inequalities above imply

that the following sets are nested:

B2
r/n(x) ⊆ B∞

r/n(x) ⊆ B1
r (x) ⊆ B2

r (x) ⊆ B∞
r (x).

Let y ∈ B2
r/n(x), so ∥y − x∥2 < r/n. Then

∥y − x∥∞ ≤ ∥y − x∥2 < r/n,

so y ∈ B∞
r/n(x), establishing

B2
r/n(x) ⊆ B∞

r/n(x).

Next, if y ∈ B∞
r/n(x), then

∥y − x∥1 ≤ n ∥y − x∥∞ < n · r

n
= r,

so y ∈ B1
r (x). Hence

B∞
r/n(x) ⊆ B1

r (x).

Next, suppose y ∈ B1
r (x). Then

∥y − x∥2 ≤ ∥y − x∥1 < r,

so y ∈ B2
r (x), and we have

B1
r (x) ⊆ B2

r (x).

Finally, if y ∈ B2
r (x), then

∥y − x∥∞ ≤ ∥y − x∥2 < r,

so y ∈ B∞
r (x), which implies

B2
r (x) ⊆ B∞

r (x),

completing the chain of containments.
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11. Prove that a norm ∥ · ∥ on a real vector space V is induced by an inner product if and
only if it satisfies the parallelogram law:

∥x + y∥2 + ∥x − y∥2 = 2 ∥x∥2 + 2 ∥y∥2 , ∀x, y ∈ V. (1)

Hint: First, show that any inner product on V induces a norm that satisfies the
parallelogram law. Second, given a norm ∥ · ∥ on V that satisfies the parallelogram
law, show that

⟨x, y⟩ = 1
4
(
∥x + y∥2 − ∥x − y∥2

)
(♡)

defines an inner product on V , and that the norm induced by this inner product is
∥ · ∥.

This is a famous theorem due to Jordan and von Neumann (1935, “On Inner Products in Linear,
Metric Spaces”, Annals of Mathematics 36(3), 719–723). They took the scalar field to be C rather
than R.
Proof: We aim to prove “a norm is induced by an inner product” ⇐⇒ “the norm satisfies the
parallelogram law”.

( =⇒ )
Given an inner product ⟨·, ·⟩ on a vector space V , and the induced norm ∥·∥, for any x, y ∈ V we have

∥x + y∥2 + ∥x − y∥2 = ⟨x + y, x + y⟩ + ⟨x − y, x − y⟩ (2a)

=
(

⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨y, y⟩
)

+
(

⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩ + ⟨y, y⟩
)

(2b)

= 2 ⟨x, x⟩ + 2 ⟨y, y⟩ (2c)
= 2 ∥x∥2 + 2 ∥y∥2

, (2d)

as required.

( ⇐= )
First, note that (changing a sign in the calculation above) given an inner product ⟨·, ·⟩, and the induced
norm ∥·∥, for any x, y ∈ V , we have

∥x + y∥2 − ∥x − y∥2 = ⟨x + y, x + y⟩ − ⟨x − y, x − y⟩ (3a)

=
(

⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨y, y⟩
)

−
(

⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩ + ⟨y, y⟩
)

(3b)

= 2 ⟨x, y⟩ + 2 ⟨y, x⟩ (3c)
= 4 ⟨x, y⟩ . (3d)

Solving for ⟨x, y⟩, we see that if a norm is induced by an inner product, then the inner product can be
expressed using the norm via (♡). Thus, if there is an inner product ⟨·, ·⟩ that induces a given norm
∥·∥, then the inner product must be given by (♡).
We now need to show that, given any norm, if we define ⟨·, ·⟩ via (♡) then ⟨·, ·⟩ is actually an inner
product if and only if the norm satisfies the parallelogram law (1). To that end, we examine each of
the axioms of an inner product, assuming ⟨·, ·⟩ is defined from a given norm ∥·∥ via (♡). This is not
an easy problem. If you solved it, you should be proud!
So, suppose ∥·∥ is a norm on V that satisfies the parallelogram law (1), and that ⟨·, ·⟩ is a candidate
inner product defined by (♡).
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(a) Symmetry.
From the definition,

⟨x, y⟩ = 1
4
(
∥x + y∥2 − ∥x − y∥2) . (4)

Swapping x and y, we see that:

⟨y, x⟩ = 1
4
(
∥y + x∥2 − ∥y − x∥2) = ⟨x, y⟩. (5)

Thus, the inner product is symmetric.
(b) Positive Definiteness.

By definition,

⟨x, x⟩ = 1
4
(
∥x + x∥2 − ∥x − x∥2) = 1

4
(
∥2x∥2 − 0

)
= 1

4
(
4∥x∥2) = ∥x∥2. (6)

Since norms are always nonnegative and zero if and only if x = 0, we conclude ⟨x, x⟩ = 0 if and
only if x = 0.
Thus, ⟨x, x⟩ is positive definite.

(c) Linearity in the First Argument.
This is the very challenging part. We will break it into two pieces: ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩
and ⟨ax, z⟩ = a ⟨x, z⟩. Both are tricky, but—perhaps suprisingly—the second requires more
analytical creativity.
To begin with, it is worth making a note of what the paralleogram law (1) implies if one of the
two vectors is the zero vector. If x = 0, then (1) states that ∥y∥2 +∥−y∥2 = 2 ∥y∥2, and hence1

∥−y∥2 = ∥y∥2 ∀y ∈ V. (7)

Consequently, if we insert x = 0 in (♡), then we we find

⟨0, y⟩ = 0 ∀y ∈ V. (8)

This may seem an obvious fact, but remember that we do not yet know that ⟨·, ·⟩ is an inner
product. All we know is that it is a function of two variables defined by (♡) and that the norm
satisfies (1).
Now, the parallelogram law (1) is presumed to hold for all x, y ∈ V . So, it is true if we write x
and y as any linear combinations of other vectors in V . Doing this judiciously will get us where
we want to go. Given any u, v, w ∈ V , if we let x = u + v and y = w then (1) states that

∥u + v + w∥2 + ∥u + v − w∥2 = 2 ∥u + v∥2 + 2 ∥w∥2
. (9)

Similarly, if we let x = u − v and y = w then (1) states that

∥u − v + w∥2 + ∥u − v − w∥2 = 2 ∥u − v∥2 + 2 ∥w∥2
. (10)

If we now subtract Eq. (10) from Eq. (9) we obtain

∥u + v + w∥2 + ∥u + v − w∥2 − ∥u − v + w∥2 − ∥u − v − w∥2 = 2 ∥u + v∥2 − 2 ∥u − v∥2
. (11)

1Note that any norm on V satisfies ∥ay∥ = |a| ∥y∥ for all a ∈ R by definition, so ∥−y∥ = ∥y∥, and
hence ∥−y∥2 = ∥y∥2, regardless of whether the parallelogram law (1) holds in V . But it is interesting that
∥−y∥2 = ∥y∥2 follows directly from the parallelogram law, which does not itself imply ∥·∥ is a norm. For
example, if we define a function ∥·∥ on Rn via ∥x∥ = x1 (the first component of x) then ∥·∥ satisfies the
parallelogram law (1) but is not a norm, since ∥−x∥ = −x1 < 0 for x1 > 0, and hence fails to be non-negative.
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Recalling the definition of the candidate inner product (♡), the RHS of Eq. (11) is

2 ∥u + v∥2 − 2 ∥u − v∥2 = 8 ⟨u, v⟩ , (12)

and the LHS of Eq. (11) is

∥(u + v) + w∥2 + ∥(u + v) − w∥2 − ∥(u − v) + w∥2 − ∥(u − v) − w∥2 (13a)
= ∥(u + w) + v∥2 + ∥(u − w) + v∥2 − ∥(u + w) − v∥2 − ∥(u − w) − v∥2 (13b)
= ∥(u + w) + v∥2 − ∥(u + w) − v∥2 + ∥(u − w) + v∥2 − ∥(u − w) − v∥2 (13c)
= 4 ⟨u + w, v⟩ + 4 ⟨u − w, v⟩ . (13d)

Therefore, Eq. (11) can be written

⟨u + w, v⟩ + ⟨u − w, v⟩ = 2 ⟨u, v⟩ . (14)

It would help us if we could replace 2 ⟨u, v⟩ with ⟨2u, v⟩ in this equation, but we don’t (yet)
know that scalar multiples can be brought inside the first argument of ⟨·, ·⟩. Nevertheless, we
can see that this is true if the scalar multiple happens to be 2, by considering the special case
of Eq. (14) with u = w, which yields

⟨2u, v⟩ + ⟨0, v⟩ = 2 ⟨u, v⟩ , (15)

and, recalling Eq. (8), this becomes

⟨2u, v⟩ = 2 ⟨u, v⟩ . (16)

Thus, in Eq. (14), we can indeed replace 2 ⟨u, v⟩ with ⟨2u, v⟩ to obtain

⟨u + w, v⟩ + ⟨u − w, v⟩ = ⟨2u, v⟩ . (17)

This is true for any u, v, w ∈ V , so, given any x, y, z ∈ V (unrelated to any particular x, y, z we
started with), if we insert

u = 1
2(x + y),

v = z,

w = 1
2(x − y),

(18)

in Eq. (17) we obtain
⟨x, z⟩ + ⟨y, z⟩ = ⟨x + y, z⟩ , ∀x, y, z ∈ V, (19)

as required.
Now the really tricky part: we need to prove that for any x, y ∈ V and any a ∈ R, ⟨ax, y⟩ =
a ⟨x, y⟩. Our first step is to observe that Eq. (16) is, in fact, a special case of what we are now
aiming to prove, namely the case a = 2. Using Eq. (16) and Eq (19), it follows that

⟨3u, v⟩ = ⟨2u + u, v⟩ = ⟨2u, v⟩ + ⟨u, v⟩ = 2 ⟨u, v⟩ + ⟨u, v⟩ = 3 ⟨u, v⟩ . (20)

Similarly, (formally by induction) we have

⟨nu, v⟩ = n ⟨u, v⟩ ∀n ∈ N. (21)

Now consider a rational number m
n , with m, n ∈ N. We have〈m

n
u, v
〉

= m

〈
1
n

u, v

〉
(22a)

=⇒ n
〈m

n
u, v
〉

= nm

〈
1
n

u, v

〉
= m ⟨u, v⟩ (22b)

=⇒
〈m

n
u, v
〉

= m

n
⟨u, v⟩ , (22c)
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so ⟨au, v⟩ = a ⟨u, v⟩ for any positive rational number. If we now observe, using Eqs. (8) and
(19), that

0 = ⟨0, v⟩ = ⟨u + (−u), v⟩ = ⟨u, v⟩ + ⟨−u, v⟩ , (23)
then we have

⟨−u, v⟩ = − ⟨u, v⟩ ∀u, v ∈ V, (24)
which then implies that, in fact, ⟨au, v⟩ = a ⟨u, v⟩ for all a ∈ Q.
Another way of saying this is that, for any u, v ∈ V , the function

f(a) = ⟨au, v⟩ − a ⟨u, v⟩ (25)

satisfies f(a) = 0 for all a ∈ Q. If we can now show f is a continuous function of a for all a ∈ R,
then it will follow that f(a) = 0 for all a ∈ R. To that end, first recall that in any normed
vector space V ,

|∥x∥ − ∥y∥| ≤ ∥x − y∥ ∀ x, y ∈ V (26)
(which you can prove by noting that ∥x∥ = ∥(x − y) + y∥ and using the triangle inequality).
Consequently, if ⟨·, ·⟩ is defined by (♡) then

|⟨x, y⟩| = 1
4

∣∣∣ ∥x + y∥2 − ∥x − y∥2
∣∣∣ (27a)

= 1
4

∣∣∣( ∥x + y∥ − ∥x − y∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣ (27b)

= 1
4

∣∣∣( ∥x + y∥ − ∥−(x − y)∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣ from (7) (27c)

≤ 1
4

∣∣∣( ∥(x + y) + (x − y)∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣ from (26) (27d)

= 1
4

∣∣∣( ∥2x∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣ (27e)

≤ 1
4

∣∣∣( ∥2x∥
)(

∥x∥ + ∥y∥ + ∥x∥ + ∥y∥
)∣∣∣ triangle inequality (27f)

= 1
4

∣∣∣(2 ∥x∥
)(

2 ∥x∥ + 2 ∥y∥
)∣∣∣ (27g)

Cancelling constants, we have

|⟨x, y⟩| ≤ ∥x∥
(

∥x∥ + ∥y∥
)

. (28)

Now suppose an ∈ Q for all n ∈ N, and an
n → ∞−−−−→ a ∈ R. We need to show that f(an) n → ∞−−−−→ f(a)

to establish that f is continuous on R. Therefore, consider

|f(an) − f(a)| =
∣∣⟨anu, v⟩ − an ⟨u, v⟩ −

(
⟨au, v⟩ − a ⟨u, v⟩

)∣∣ (29a)
=
∣∣⟨anu, v⟩ − ⟨au, v⟩ −

(
an ⟨u, v⟩ − a ⟨u, v⟩

)∣∣ (29b)
= |⟨anu, v⟩ − ⟨au, v⟩ − (an − a) ⟨u, v⟩| (29c)
= |⟨anu, v⟩ + ⟨−au, v⟩ − (an − a) ⟨u, v⟩| from (24) (29d)
= |⟨anu − au, v⟩ − (an − a) ⟨u, v⟩| from (19) (29e)
= |⟨(an − a)u, v⟩ − (an − a) ⟨u, v⟩| (29f)
≤ |⟨(an − a)u, v⟩| + |(an − a) ⟨u, v⟩| (29g)
= |⟨(an − a)u, v⟩| + |an − a| |⟨u, v⟩| (29h)
≤ ∥(an − a)u∥ (∥(an − a)u∥ + ∥v∥) + |an − a| |⟨u, v⟩| from (28) (29i)

= |an − a|
(

∥u∥
(

|an − a| ∥u∥ + ∥v∥ + |⟨u, v⟩|
))

(29j)
n → ∞−−−−→ 0. (29k)

Thus, f(an) n → ∞−−−−→ f(a). Since a ∈ R was arbitrary, f is continuous on R. Therefore, f(a) = 0
for all a ∈ R, and hence, by definition (25), ⟨au, v⟩ = a ⟨u, v⟩ for all a ∈ R, as required.
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12. For each of the real vector spaces Rn, ℓp, and C[a, b], prove that the only p-norm
that is induced by an inner product is the Euclidean norm.
Hint: Show that a p-norm satisfies the parallelogram law if and only if p = 2.
In Rn, the p-norm is

∥x∥p =
(

n∑
i=1

|xi|p
)1/p

, (30)

so the parallelogram law (1) states(
n∑

i=1
|xi + yi|p

)2/p

+
(

n∑
i=1

|xi − yi|p
)2/p

= 2
(

n∑
i=1

|xi|p
)2/p

+ 2
(

n∑
i=1

|yi|p
)2/p

. (31)

If this law holds for all x, y ∈ Rn, then it holds in particular for x = e1 = (1, 0, 0, . . . , 0) and
y = e2 = (0, 1, 0, . . . , 0). Inserting these specific values of x and y into Eq (31), we have

∥x + y∥2
p = (1p + 1p)2/p = 22/p, (32)

∥x − y∥2
p = (1p + 1p)2/p = 22/p, (33)

so the LHS of the parallelogram law (31) is

22/p + 22/p = 2 · 22/p = 21+2/p, (34)

and the RHS is
2∥x∥2

p + 2∥y∥2
p = 2(1p)2/p + 2(1p)2/p = 2 + 2 = 4. (35)

If the identity (31) holds, then

21+2/p = 22 ⇐⇒ 1 + 2
p

= 2 ⇐⇒ p = 2, (36)

so the only value of p for which ∥·∥p could possibly satisfy the parallelogram law (31) is p = 2.
To complete the proof, we must now show that for p = 2 the parallelogram law (31) holds for all
x, y ∈ Rn, not just x = e1 and y = e2. With p = 2, the LHS of the law (31) is

n∑
i=1

|xi + yi|2 +
n∑

i=1
|xi − yi|2 =

n∑
i=1

(xi + yi)2 +
n∑

i=1
(xi − yi)2 (37a)

=
n∑

i=1
(x2

i +���2xiyi + y2
i ) +

n∑
i=1

(x2
i −���2xiyi + y2

i ) (37b)

= 2
n∑

i=1
|xi|2 + 2

n∑
i=1

|yi|2, (37c)

which is the RHS of the law (31), as required.
Thus, given the Jordan-von Neumann theorem (problem 11), we have confirmed that a p-norm on Rn

is induced by an inner product if and only if p = 2, the Euclidean case.
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