Mathematics 3A03 Real Analysis I
 Fall 2019 ASSIGNMENT 5

This assignment is due on Thursday 21 November 2019 at 2:25pm.
PLEASE NOTE that you must submit online via crowdmark.
You will receive an e-mail from crowdmark with the required link. Do NOT submit a hardcopy of this assignment.

Note: Not all questions will be marked. The questions to be
marked will be determined after the assignment is due.

1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even if $f(-x)=f(x)$ for all x, and odd if $f(-x)=-f(x)$ for all x. Suppose f is differentiable. Prove, directly from the definition of the derivative, that (a) if f is even then f^{\prime} is odd and (b) if f is odd then f^{\prime} is even.
2. Establish that the hypotheses of Rolle's Theorem are necessary by constructing functions f that have the following properties, but for which it is not true that there exists $x \in(a, b)$ such that $f^{\prime}(x)=0$. In each case, state which hypothesis of Rolle's Theorem is not satified in your example.
(a) f is continuous on $[a, b]$ and differentiable on (a, b);
(b) f is continuous on $[a, b]$ and $f(a)=f(b)$;
(c) f is differentiable on (a, b) and $f(a)=f(b)$.
3. Prove that if $a<b$ and f is integrable on the closed interval $[a, b]$ then f is necessarily integrable on any closed subinterval of $[a, b]$.
4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ via $f(x)=x$ if $x \in \mathbb{Q}$ and $f(x)=0$ if $x \notin \mathbb{Q}$.
(a) Let P be any partition of $[0,1]$. Find $L(f, P)$.
(b) Find $\inf \{U(f, P): P$ a partition of $[0,1]\}$.
(c) Is f integrable on $[0,1]$?
