Mathematics 3A03 Real Analysis I
Fall 2019 ASSIGNMENT 4 (Solutions)

This assignment was due on Tuesday 12 November 2019 at 2:25pm via crowdmark.

Note: Not all questions will be marked. The questions to be
marked will be determined after the assignment is due.

1. In each part of this problem, the function f is defined by the formula

f(a) =zl ()

Pay close attention to the domain of the function in each part and consider the state-
ment

lim f(z) = V2. (W)

T—2
Does statement (#) make sense for the given domain? If not, why not? If statement
(#) does make sense, then either prove or disprove it directly from the e-¢ definition
of a limit.
(a) f:R—=R.
Solution: The statement (#) makes sense because the function f(z) is well-

defined at each x € R. To prove that the stated limit is, in fact, correct, we must
show that Ve > 0 36 > 0 such that |z — 2| < § = |f(z) — f(2)] < e. Since

f(2) = v/2, we must show ‘\/\xl — \/5‘ < e. To that end, note that

Mttt
PEE

<|lz| -2 VzeR.

V-3 - V-]

7| — 2
Vil + V2

Note further that if £ > 0 then the absolute value bars around z in the final
expression can be dropped to obtain |x — 2|. Therefore, given ¢ > 0, choose
d =min{2,e} (weneed 6 < 2toensurex > 0). Then |z — 2| < < ||z| 2| <
§ = ’«/|x| )
An alternative proof that does not require rationalizing the numerator can be
constructed as follows. This is definitely not as slick, but it illustrates that one

\/M—\/ﬁ‘<513

< g, as required. O

can find quite different proofs for the same result. Note that

—e <]z -V2<e.

equivalent to
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We are interested in = near 2, so we can restrict attention to z > 0 (i.e., we will
take 0 < 2), and hence what we need to show is that

—e<Vr—V2<e
= V2—e< VT <V2+¢.

We are interested in arbitrarily small e, so we can restrict attention to € < v/2, in
which case we can square the sequence of inequalities above and find that what
we need to show is that

(V2—e)l?<z<(V2+4¢)

— (V2-e)P?-2<z-2<(V2+e)?-2

= 2 —2:V242-2<1—-2<e?+2:V2+2-2
= 2 —2V2 <2 —-2<e? 422

— -2 - 2%V2<a—2<e? 422

= |z —2| <422

— |z -2 <.

Thus, given 0 < ¢ < v/2, choose § = £2. Then from the sequence of steps above,
lr -2 <0 = ‘\/|x]—\/§‘ < g, as required. O

f:Q—=R

Solution: The statement (#) makes sense because the function f(x) is well-
defined at each z € Q (and the limit, /2, is in the co-domain, R). To prove
that the stated limit is, in fact, correct, we must show that Ve > 0 46 > 0 such
that, if |z — 2| < 6 and = € Q, then |f(z) — f(2)| < &. The argument in part (a)
works equally well here, since we have established that we can find a suitable §
without the restriction of the domain to Q, so it certainly applies when we restrict
attention to rational points. 0
Note: f here is the restriction to Q of a function that is well-defined and contin-
uous on R. But consider the function

VIl zeqQ,
g(x)_{o x & Q.

g agrees with f when restricted to Q, hence g is continuous as a function on Q.
But g is not continuous (except at one point) as a function on R.

f:Z—R.

Solution: The statement (#) makes sense because the function f(z) is well-
defined at each 2 € Z (and the limit, /2, is in the co-domain, R). Again,
the function f is continuous when restricted to Z, but note that any function
f :Z — R is continuous because if we choose 6 = 1/2, say, then the only point in
the domain (Z) that satisfies |z — 2| < 0 is = 2 itself. O

Page 2 of 7



2. The floor function is defined for all z € R by |z] = the greatest integer less than or
equal to x, i.e., the greatest n € Z such that n < x. Determine the points of continuity
of the following functions:

(a) flz) = [z];
Solution: f is locally constant (and hence continuous) on each open interval
(n,n+ 1), where n € Z. f has a jump discontinuity at each n € Z.
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(b) f(z) == [x];
Solution: This function is continuous on each open interval (n,n + 1), where
n € Z, and at x = 0. f has a jump discontinuity at each n € Z \ {0}.
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(¢) f(z) = |1/a], 2 0.

Solution: This function is continuous on each open interval (%, n%l), where n €
Z="', on each open interval (=7, ), where n € Z>°, and throughout the intervals
(—o0,—1) and (1,00).

f has a jump discontinuity at each reciprical non-zero
integer, z = £, n € Z\ {0}.
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3. Show that the function f(z) = 1/z? is (a) uniformly continuous on [1, o), but (b) not
uniformly continuous on (0, c0).

Solution: (a) Given € > 0 we must find § > 0 such that if z,y > 1 and |z —y| < J
then |(1/2?) — (1/y?)| < €. Note that

L 1| 2=y
72 yQ_ x2y2
= |z —y| x;r;y
7y
B 11
= [z —y| x—yQﬂLxTy
<l|lx—y|-2 caxyy > 1.

Therefore, given € > 0, choose § = ¢/2. Then the above calculation implies that if
|z —y| < 0 then
1 1

x2 y2

§2].7:—y]<2%:€,

as required. N

(b) Consider € = 1. Given § > 0, we must find z,y € (0, 00) such that |z — y| < d, yet
|(1/2?) — (1/y?)| > 1. To that end, suppose y = 2z (and x > 0). Then

[z =yl = |-z =z,
and
1 1y |1 1
2 y? g2 (22)2
1 1
|22 4a?
3/4
2
1/2
2
Now note that
1/2 1
V2 o4 e 2t
x? 2
< < L
x [E—
V2
Therefore, given § > 0, choose x = min{g, #i} and y = 2x. Then, the above calcula-
tions show that |z — y| < 4§, yet |(1/2?) — (1/y?)| > 1, as required. O
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4. Prove that a continuous function maps closed intervals to closed intervals. Thus, if
a <band f : [a,b] — R is continuous then f([a,b]) (the range of f) is a closed interval.
Hint: Intermediate Value Theorem.

Note: This is a special case of the more general theorem mentioned in class that a
continuous function maps compact sets to compact sets.

Solution: First, since [a,b] is a compact set, f attains a maximum value (say M)
and minimum value (say m) on [a,b]. Therefore, there exist x,y € [a,b] such that
flx)=m, fly) = M, and m < f(z) < M for all z € [a,b]. Thus, f([a,b]) C [m, M].
We will show that [m, M] C f([a,b]) to complete the proof. If m = M then f is
constant and the range of f is a single point or, equivalently, the degenerate closed
interval [m, m|. Now suppose m < M. Then the Intermediate Value Theorem implies
that for every L € (m, M), there exists z € (x,y) (if z < y) or z € (y,z) (if x > y)
such that f(z) = L. Thus, f([a,b]) contains every point between m and M, i.e.,
m, M] C f([a,b]). Therefore, f([a,b]) = [m,M], i.e., the range of f is a closed
interval. O
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