Mathematics 3A03 Real Analysis I Fall 2019 ASSIGNMENT 3 (Solutions)

This assignment was due on Tuesday 22 October 2019 at 2:25pm via crowdmark.
Note: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{1}=0.1, a_{2}=0.12, a_{3}=0.123, \ldots, a_{12}=0.123456789101112, \ldots
$$

Prove that $\left\{a_{n}\right\}$ converges.
Solution: $\left\{a_{n}\right\}$ is bounded $\left(0<a_{n}<0.2\right.$ for all $\left.n\right)$ and increasing, hence by the Monotone Convergence Theorem, $\left\{a_{n}\right\}$ converges.
2. Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy sequences and let $c_{n}=\left|a_{n}-b_{n}\right|$ for all n. Prove that $\left\{c_{n}\right\}$ is Cauchy.

Solution:

Since $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy, we know that given any $\varepsilon>0$, we can find $N \in \mathbb{N}$ such that for all $m, n \geq N,\left|a_{n}-a_{m}\right|<\frac{\varepsilon}{2}$ and $\left|b_{n}-b_{m}\right|<\frac{\varepsilon}{2}$. But then $\forall m, n \geq N$ we have

$$
\begin{aligned}
\left|c_{n}-c_{m}\right| & =\| a_{n}-b_{n}\left|-\left|a_{m}-b_{m}\right|\right| \\
& \leq\left|\left(a_{n}-b_{n}\right)-\left(a_{m}-b_{m}\right)\right| \\
& =\left|\left(a_{n}-a_{m}\right)-\left(b_{n}-b_{m}\right)\right| \\
& \leq\left|a_{n}-a_{m}\right|+\left|b_{n}-b_{m}\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

so c_{n} is Cauchy.
3. Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers. The following statement looks similar to the Cauchy criterion:

$$
\forall \varepsilon>0, \exists N \in \mathbb{N} \text { such that } \forall n \geq N,\left|a_{n+1}-a_{n}\right|<\varepsilon
$$

Prove that there is a sequence $\left\{a_{n}\right\}$ that satisfies this criterion and yet is not Cauchy. Solution: Let $a_{n}=\sqrt{n}$, which diverges and is therefore not Cauchy. Then, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|a_{n+1}-a_{n}\right| & =\sqrt{n+1}-\sqrt{n} \\
& =(\sqrt{n+1}-\sqrt{n}) \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\
& =\frac{1}{\sqrt{n+1}+\sqrt{n}} \\
& <\frac{1}{\sqrt{n}} .
\end{aligned}
$$

Therefore, given $\varepsilon>0$, choose $N=\left\lceil 1 / \varepsilon^{2}\right\rceil+1$, so $N>\frac{1}{\varepsilon^{2}}$ and hence $\frac{1}{\sqrt{N}}<\varepsilon$. Then, for all $n \geq N$, we have

$$
\left|a_{n+1}-a_{n}\right|<\frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{N}}<\varepsilon
$$

as required.
4. Give examples of functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that
(a) f is one-to-one but not onto;

Solution: $f(n)=2 n$.
(b) f is onto but not one-to-one;

Solution:

$$
f(n)= \begin{cases}n & \text { if } n \text { is odd } \\ n / 2 & \text { if } n \text { is even }\end{cases}
$$

(c) f is a bijection that is not the identity.

Solution: $f(n)=n+1$.
5. Prove or disprove: There exist functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that
(a) f is one-to-one but not onto, g is onto but not one-to-one, and $f \circ g$ is a bijection; Solution: If f is not onto, then regardless of the range of $g, f \circ g$ cannot be onto, so $f \circ g$ cannot be a bijection.
(b) f is onto but not one-to-one, g is one-to-one but not onto, and $f \circ g$ is a bijection. Solution: This can be done by squashing \mathbb{R} to the interval $(-1,1)$ and then stretching it back out to $(-\infty, \infty)$. For example, let

$$
\begin{aligned}
& g(x)=\frac{x}{1+|x|} \\
& f(x) \begin{cases}\frac{x}{1-|x|} & |x|<1 \\
0 & |x| \geq 1\end{cases}
\end{aligned}
$$

Then g is one-to-one but not onto \mathbb{R}, f is onto \mathbb{R} but not one-to-one, and $f(g(x))=$ x is a bijection of \mathbb{R}.
6. Let U be an uncountable subset of \mathbb{R}, and let $U_{n}=U \cap[-n, n]$ for each $n \in \mathbb{N}$.
(a) Prove that for some $k \in \mathbb{N}, U_{k}$ is uncountable.

Solution: Suppose U_{k} is countable for all $k \in \mathbb{N}$. Then $U=\bigcup_{k \in \mathbb{N}} U_{k}$ is a countable union of countable sets, and hence is countable. $\Rightarrow \Leftarrow$
(b) Prove that there is a convergent sequence $\left\{a_{n}\right\}$ such that $a_{n} \in U$ for all n and $a_{n} \neq a_{m}$ whenever $n \neq m$.
Solution: Exploiting part (a), choose $k \in \mathbb{N}$ such that $U_{k}=U \cap[-k, k]$ is uncountable. In particular, U_{k} contains countably many distinct points, so there
is a sequence $\left\{x_{n}\right\}$ of distinct points in U_{k}. But $-k \leq x \leq k$ for all $x \in U_{k}$, so $-k \leq x_{n} \leq k$ for all $n \in \mathbb{N}$; thus $\left\{x_{n}\right\}$ is a bounded sequence. Therefore, the Bolzano-Weierstrass theorem implies that $\left\{x_{n}\right\}$ contains a convergent subsequence, say $\left\{a_{n}\right\}$. Moreover, since $\left\{x_{n}\right\}$ is a sequence of distinct points, the subsequence $\left\{a_{n}\right\}$ must also be a sequence of distinct points.
7. Let $E=\{x: \sqrt{2} \leq x \leq \sqrt{3}, x \notin \mathbb{Q}\}$.
(a) Prove or disprove: E is open in \mathbb{R}.

Solution: False. Every point in an open set is contained in an open intervals that is a subset of the set. But any open interval containing any point in E contains rational numbers, i.e., points not in E.
(b) Prove or disprove: E is closed in \mathbb{R}.

Solution: False. $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}. In particular, $\frac{3}{2}$ is an accumulation point of E, but $\frac{3}{2} \notin E$.
(c) Find the interior of E in \mathbb{R}.

Solution: $E^{\circ}=\varnothing$. This follows from the argument in part (a).
(d) Find the closure of E in \mathbb{R}.

Solution: $\bar{E}=[\sqrt{2}, \sqrt{3}]$.
(e) Find the boundary of E in \mathbb{R}.

Solution: $\partial E=[\sqrt{2}, \sqrt{3}]$.
8. Prove that the interval $[0,1]$ is compact, directly from the definitions of the each of the three equivalent characterizations of compactness:
(a) $[0,1]$ is closed and bounded;

Solution: If $x \in[0,1]$ then $0 \leq x \leq 1$, hence $[0,1]$ is bounded. Suppose $[0,1]$ is not closed. Then $[0,1]$ has an accumulation point $x \notin[0,1]$. Hence either $x<0$ or $x>1$. Suppose $x<0$. Then let $\delta=-x / 2$ and observe that $(x-\delta, x+\delta)$ is a neighbourhood of x that contains no points of $[0,1]$ other than x itself. Hence x is not an accumulation point of $[0,1] . \Rightarrow \Leftarrow$. Therefore, $[0,1]$ is closed.
(b) $[0,1]$ has the Bolzano-Weierstrass property;

Solution: This is a special case of the theorem proved in class that any closed and bounded set has the Bolzano-Weierstrass property.
(c) $[0,1]$ has the Heine-Borel property.

Solution: This requires a clever argument, which is a key piece of the proof of the general Heine-Borel theorem. Suppose, in order to derive a contradiction, that [0, 1] does not have the Heine-Borel property, i.e., there is an open cover \mathcal{U} of $[0,1]$ that contains no finite subcover. Thus, infinitely many sets in \mathcal{U} are required to cover $[0,1]$. Consider the two closed subintervals $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$, obtained by bisecting $[0,1]$. It must be that at least one of these subintervals cannot be covered by finitely many sets in \mathcal{U}. Call this subinterval I_{1} (if neither of the two subintervals can be covered by finitely many sets in \mathcal{U} then it doesn't matter which one we
choose). Now, by a similar argument, we can bisect I_{1} and find that one of its two subintervals (call it I_{2}) cannot be covered by finitely many sets in \mathcal{U}. Continuing inductively, we have a nested sequence of closed intervals

$$
[0,1] \equiv I_{0} \supset I_{1} \supset I_{2} \supset \cdots
$$

none of which can be covered by finitely many sets in \mathcal{U}. Note that the length of I_{n} is $\frac{1}{2^{n}}$. Now choose a sequence $\left\{x_{n}\right\}$ where $x_{k} \in I_{k}$ for each k. Because the intervals are nested and shrink in length to zero, $\left\{x_{n}\right\}$ is a Cauchy sequence, and therefore converges, say $x_{n} \rightarrow L$. Moreover, we must have $L \in I_{k}$ for all $k \in \mathbb{N}$ (otherwise we could isolate L from I_{k} for all k large enough, contradicting L being the limit of the sequence). Finally, since $L \in[0,1]$, there exists $U \in \mathcal{U}$ such that $L \in U$. But for sufficiently large n, we must have $I_{n} \subset U$, which means I_{n} is covered by just one set in $\mathcal{U} . \Rightarrow \Leftarrow$ Thus, $[0,1]$ must have the Heine-Borel property.

