
Mathematics 3A03 Real Analysis I

Fall 2019 ASSIGNMENT 3 (Solutions)

This assignment was due on Tuesday 22 October 2019 at 2:25pm via crowdmark.

Note: Not all questions will be marked. The questions to be
marked will be determined after the assignment is due.

1. Consider the sequence {an} defined by

a1 = 0.1, a2 = 0.12, a3 = 0.123, . . . , a12 = 0.123456789101112, . . .

Prove that {an} converges.

Solution: {an} is bounded (0 < an < 0.2 for all n) and increasing, hence by the
Monotone Convergence Theorem, {an} converges.

2. Suppose {an} and {bn} are Cauchy sequences and let cn = |an − bn| for all n. Prove
that {cn} is Cauchy.

Solution:

Since {an} and {bn} are Cauchy, we know that given any ε > 0, we can find N ∈ N
such that for all m,n ≥ N , |an − am| < ε

2
and |bn − bm| < ε

2
. But then ∀m,n ≥ N we

have

|cn − cm| = ||an − bn| − |am − bm||
≤ |(an − bn)− (am − bm)|
= |(an − am)− (bn − bm)|
≤ |an − am|+ |bn − bm|

<
ε

2
+
ε

2
= ε ,

so cn is Cauchy.

3. Suppose {an} is a sequence of real numbers. The following statement looks similar to
the Cauchy criterion:

∀ε > 0, ∃N ∈ N such that ∀n ≥ N, |an+1 − an| < ε.

Prove that there is a sequence {an} that satisfies this criterion and yet is not Cauchy.

Solution: Let an =
√
n, which diverges and is therefore not Cauchy. Then, for all

n ∈ N,

|an+1 − an| =
√
n+ 1−

√
n

=
(√

n+ 1−
√
n
)
·
√
n+ 1 +

√
n√

n+ 1 +
√
n

=
1√

n+ 1 +
√
n

<
1√
n
.
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Therefore, given ε > 0, choose N = d1/ε2e + 1, so N > 1
ε2

and hence 1√
N
< ε. Then,

for all n ≥ N , we have

|an+1 − an| <
1√
n
≤ 1√

N
< ε ,

as required.

4. Give examples of functions f : Z→ Z such that

(a) f is one-to-one but not onto;

Solution: f(n) = 2n.

(b) f is onto but not one-to-one;

Solution:

f(n) =

{
n if n is odd,

n/2 if n is even.

(c) f is a bijection that is not the identity.

Solution: f(n) = n+ 1.

5. Prove or disprove: There exist functions f : R→ R and g : R→ R such that

(a) f is one-to-one but not onto, g is onto but not one-to-one, and f ◦ g is a bijection;

Solution: If f is not onto, then regardless of the range of g, f ◦ g cannot be onto,
so f ◦ g cannot be a bijection.

(b) f is onto but not one-to-one, g is one-to-one but not onto, and f ◦ g is a bijection.

Solution: This can be done by squashing R to the interval (−1, 1) and then
stretching it back out to (−∞,∞). For example, let

g(x) =
x

1 + |x|

f(x)


x

1− |x|
|x| < 1

0 |x| ≥ 1.

Then g is one-to-one but not onto R, f is onto R but not one-to-one, and f(g(x)) =
x is a bijection of R.

6. Let U be an uncountable subset of R, and let Un = U ∩ [−n, n] for each n ∈ N.

(a) Prove that for some k ∈ N, Uk is uncountable.

Solution: Suppose Uk is countable for all k ∈ N. Then U =
⋃

k∈N Uk is a countable
union of countable sets, and hence is countable. ⇒⇐

(b) Prove that there is a convergent sequence {an} such that an ∈ U for all n and
an 6= am whenever n 6= m.

Solution: Exploiting part (a), choose k ∈ N such that Uk = U ∩ [−k, k] is
uncountable. In particular, Uk contains countably many distinct points, so there
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is a sequence {xn} of distinct points in Uk. But −k ≤ x ≤ k for all x ∈ Uk,
so −k ≤ xn ≤ k for all n ∈ N; thus {xn} is a bounded sequence. Therefore, the
Bolzano-Weierstrass theorem implies that {xn} contains a convergent subsequence,
say {an}. Moreover, since {xn} is a sequence of distinct points, the subsequence
{an} must also be a sequence of distinct points.

7. Let E = {x :
√

2 ≤ x ≤
√

3, x /∈ Q}.

(a) Prove or disprove: E is open in R.

Solution: False. Every point in an open set is contained in an open intervals that
is a subset of the set. But any open interval containing any point in E contains
rational numbers, i.e., points not in E.

(b) Prove or disprove: E is closed in R.

Solution: False. R \ Q is dense in R. In particular, 3
2

is an accumulation point
of E, but 3

2
6∈ E.

(c) Find the interior of E in R.

Solution: E◦ = ∅. This follows from the argument in part (a).

(d) Find the closure of E in R.

Solution: E = [
√

2,
√

3].

(e) Find the boundary of E in R.

Solution: ∂E = [
√

2,
√

3].

8. Prove that the interval [0, 1] is compact, directly from the definitions of the each of the
three equivalent characterizations of compactness:

(a) [0, 1] is closed and bounded;

Solution: If x ∈ [0, 1] then 0 ≤ x ≤ 1, hence [0, 1] is bounded. Suppose [0, 1] is
not closed. Then [0, 1] has an accumulation point x /∈ [0, 1]. Hence either x < 0
or x > 1. Suppose x < 0. Then let δ = −x/2 and observe that (x− δ, x + δ) is a
neighbourhood of x that contains no points of [0, 1] other than x itself. Hence x is
not an accumulation point of [0, 1]. ⇒⇐. Therefore, [0, 1] is closed.

(b) [0, 1] has the Bolzano-Weierstrass property;

Solution: This is a special case of the theorem proved in class that any closed
and bounded set has the Bolzano-Weierstrass property.

(c) [0, 1] has the Heine-Borel property.

Solution: This requires a clever argument, which is a key piece of the proof of the
general Heine-Borel theorem. Suppose, in order to derive a contradiction, that [0, 1]
does not have the Heine-Borel property, i.e., there is an open cover U of [0, 1] that
contains no finite subcover. Thus, infinitely many sets in U are required to cover
[0, 1]. Consider the two closed subintervals [0, 1

2
] and [1

2
, 1], obtained by bisecting

[0, 1]. It must be that at least one of these subintervals cannot be covered by
finitely many sets in U . Call this subinterval I1 (if neither of the two subintervals
can be covered by finitely many sets in U then it doesn’t matter which one we
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choose). Now, by a similar argument, we can bisect I1 and find that one of its two
subintervals (call it I2) cannot be covered by finitely many sets in U . Continuing
inductively, we have a nested sequence of closed intervals

[0, 1] ≡ I0 ⊃ I1 ⊃ I2 ⊃ · · · ,

none of which can be covered by finitely many sets in U . Note that the length of In
is 1

2n
. Now choose a sequence {xn} where xk ∈ Ik for each k. Because the intervals

are nested and shrink in length to zero, {xn} is a Cauchy sequence, and therefore
converges, say xn → L. Moreover, we must have L ∈ Ik for all k ∈ N (otherwise
we could isolate L from Ik for all k large enough, contradicting L being the limit
of the sequence). Finally, since L ∈ [0, 1], there exists U ∈ U such that L ∈ U .
But for sufficiently large n, we must have In ⊂ U , which means In is covered by
just one set in U . ⇒⇐ Thus, [0, 1] must have the Heine-Borel property.
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