Mathematics 3A03 Real Analysis I
Fall 2019 ASSIGNMENT 3 (Solutions)

This assignment was due on Tuesday 22 October 2019 at 2:25pm via crowdmark.

Note: Not all questions will be marked. The questions to be
marked will be determined after the assignment is due.

1. Consider the sequence {a,} defined by
ay = 0.1, ay = 0.12, ag = 0.123, ..., ap = 0.123456789101112, ...

Prove that {a,} converges.

Solution: {a,} is bounded (0 < a, < 0.2 for all n) and increasing, hence by the

Monotone Convergence Theorem, {a,} converges. ]
2. Suppose {a,} and {b,} are Cauchy sequences and let ¢, = |a,, — b,| for all n. Prove

that {c,} is Cauchy.

Solution:

Since {a,} and {b,} are Cauchy, we know that given any ¢ > 0, we can find N € N
such that for all m,n > N, |a, — an| < § and [b, — by,| < 5. But then Vm,n > N we

have
cn = cm| = [|an — bo| = |am — bul|

< (an = by) — (A — b))

= [(an — am) — (bn — bp)|

< an — am| + [bn, — by

€ €

< 5“}‘5 =&,

so ¢, is Cauchy. m

3. Suppose {a,} is a sequence of real numbers. The following statement looks similar to
the Cauchy criterion:

Ve > 0, 3N € N such that Vn > N, |a,41 — a,| < e.
Prove that there is a sequence {a,} that satisfies this criterion and yet is not Cauchy.

Solution: Let a, = y/n, which diverges and is therefore not Cauchy. Then, for all
n e N,

a1 —anl =V +1—/n

I S W AL S
= (Yt 1=vn) Vn+1++/n
1

Vntl4vn
1

< —=.

vn
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Therefore, given € > 0, choose N = [1/e*] + 1, s0 N > 6% and hence \/LN < e. Then,
for all n > N, we have

as required. O
4. Give examples of functions f : Z — Z such that

(a) f is one-to-one but not onto;
Solution: f(n) = 2n.

(b) f is onto but not one-to-one;
Solution:

n/2 if n is even.

{n if n is odd,

(c) f is a bijection that is not the identity.
Solution: f(n)=n+ 1.

5. Prove or disprove: There exist functions f : R — R and g : R — R such that

(a) f is one-to-one but not onto, g is onto but not one-to-one, and f o g is a bijection;
Solution: If f is not onto, then regardless of the range of g, f o g cannot be onto,
so f o g cannot be a bijection. O]
(b) f is onto but not one-to-one, g is one-to-one but not onto, and f o g is a bijection.

Solution: This can be done by squashing R to the interval (—1,1) and then
stretching it back out to (—oo, 00). For example, let

x
X g
9() 1+ |z
T
lz] <1
flw)q 1=zl
0 |z| > 1.

Then g is one-to-one but not onto R, f is onto R but not one-to-one, and f(g(x))
x is a bijection of R.

o

6. Let U be an uncountable subset of R, and let U,, = U N [—n, n] for each n € N.

(a) Prove that for some k € N, Uy is uncountable.
Solution: Suppose Uy, is countable for all £ € N. Then U = | J, . Uy is a countable
union of countable sets, and hence is countable. =<« O
(b) Prove that there is a convergent sequence {a,} such that a, € U for all n and
a, # a,, whenever n # m.

Solution: Exploiting part (a), choose k& € N such that Uy = U N [—k, k] is
uncountable. In particular, U, contains countably many distinct points, so there
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is a sequence {x,} of distinct points in Uy. But —k < z < k for all z € Uy,
so —k <z, < k for all n € N; thus {z,} is a bounded sequence. Therefore, the
Bolzano-Weierstrass theorem implies that {x, } contains a convergent subsequence,
say {a,}. Moreover, since {x,} is a sequence of distinct points, the subsequence
{a,} must also be a sequence of distinct points. O

7. Leth{x:ﬁSxSx/ix%@}.

(a)

Prove or disprove: F is open in R.

Solution: False. Every point in an open set is contained in an open intervals that
is a subset of the set. But any open interval containing any point in E contains
rational numbers, i.e., points not in F. ]
Prove or disprove: F is closed in R.

Solution: False. R\ Q is dense in R. In particular, % is an accumulation point

of £, but 2 ¢ E. 0
Find the interior of F in R.
Solution: E° = @. This follows from the argument in part (a). O

Find the closure of E in R.
Solution: E = [\/5, \/3}
Find the boundary of F in R.
Solution: OF = [\/5, \/5]

8. Prove that the interval [0, 1] is compact, directly from the definitions of the each of the
three equivalent characterizations of compactness:

(a)

[0,1] is closed and bounded;

Solution: If x € [0,1] then 0 < z < 1, hence [0, 1] is bounded. Suppose [0, 1] is
not closed. Then [0, 1] has an accumulation point x ¢ [0,1]. Hence either z < 0
or z > 1. Suppose x < 0. Then let § = —z/2 and observe that (z — d,z + J) is a
neighbourhood of = that contains no points of [0, 1] other than z itself. Hence z is
not an accumulation point of [0, 1]. =<=. Therefore, [0, 1] is closed. O

[0, 1] has the Bolzano-Weierstrass property;

Solution: This is a special case of the theorem proved in class that any closed
and bounded set has the Bolzano-Weierstrass property.

[0, 1] has the Heine-Borel property.

Solution: This requires a clever argument, which is a key piece of the proof of the
general Heine-Borel theorem. Suppose, in order to derive a contradiction, that [0, 1]
does not have the Heine-Borel property, i.e., there is an open cover U of [0, 1] that
contains no finite subcover. Thus, infinitely many sets in U are required to cover
[0,1]. Consider the two closed subintervals [0, 3] and [1, 1], obtained by bisecting
[0,1]. It must be that at least one of these subintervals cannot be covered by
finitely many sets in /. Call this subinterval I; (if neither of the two subintervals

can be covered by finitely many sets in I then it doesn’t matter which one we
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choose). Now, by a similar argument, we can bisect I; and find that one of its two
subintervals (call it I5) cannot be covered by finitely many sets in #. Continuing
inductively, we have a nested sequence of closed intervals

[O,l]E[oDIlDIQD"',

none of which can be covered by finitely many sets in /. Note that the length of I,,
is 2% Now choose a sequence {z,,} where x} € I for each k. Because the intervals
are nested and shrink in length to zero, {z,} is a Cauchy sequence, and therefore
converges, say x, — L. Moreover, we must have L € I for all k£ € N (otherwise
we could isolate L from I for all k large enough, contradicting L being the limit
of the sequence). Finally, since L € [0, 1], there exists U € U such that L € U.
But for sufficiently large n, we must have I,, C U, which means I, is covered by
just one set in Y. =<« Thus, [0, 1] must have the Heine-Borel property. ]
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