Mathematics 3A03 Real Analysis I Fall 2019 ASSIGNMENT 3 (Solutions)

This assignment was due on Tuesday 22 October 2019 at 2:25pm via crowdmark.

<u>Note</u>: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Consider the sequence $\{a_n\}$ defined by

 $a_1 = 0.1, a_2 = 0.12, a_3 = 0.123, \ldots, a_{12} = 0.123456789101112, \ldots$

Prove that $\{a_n\}$ converges.

Solution: $\{a_n\}$ is bounded $(0 < a_n < 0.2 \text{ for all } n)$ and increasing, hence by the Monotone Convergence Theorem, $\{a_n\}$ converges.

2. Suppose $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences and let $c_n = |a_n - b_n|$ for all n. Prove that $\{c_n\}$ is Cauchy.

Solution:

Since $\{a_n\}$ and $\{b_n\}$ are Cauchy, we know that given any $\varepsilon > 0$, we can find $N \in \mathbb{N}$ such that for all $m, n \ge N$, $|a_n - a_m| < \frac{\varepsilon}{2}$ and $|b_n - b_m| < \frac{\varepsilon}{2}$. But then $\forall m, n \ge N$ we have

$$\begin{aligned} |c_n - c_m| &= ||a_n - b_n| - |a_m - b_m|| \\ &\leq |(a_n - b_n) - (a_m - b_m)| \\ &= |(a_n - a_m) - (b_n - b_m)| \\ &\leq |a_n - a_m| + |b_n - b_m| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon , \end{aligned}$$

so c_n is Cauchy.

3. Suppose $\{a_n\}$ is a sequence of real numbers. The following statement looks similar to the Cauchy criterion:

 $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \ge N, |a_{n+1} - a_n| < \varepsilon.$

Prove that there is a sequence $\{a_n\}$ that satisfies this criterion and yet is not Cauchy. **Solution:** Let $a_n = \sqrt{n}$, which diverges and is therefore not Cauchy. Then, for all $n \in \mathbb{N}$,

$$\begin{aligned} |a_{n+1} - a_n| &= \sqrt{n+1} - \sqrt{n} \\ &= \left(\sqrt{n+1} - \sqrt{n}\right) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \\ &= \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ &< \frac{1}{\sqrt{n}} \,. \end{aligned}$$

Page 1 of 4

Therefore, given $\varepsilon > 0$, choose $N = \lfloor 1/\varepsilon^2 \rfloor + 1$, so $N > \frac{1}{\varepsilon^2}$ and hence $\frac{1}{\sqrt{N}} < \varepsilon$. Then, for all $n \ge N$, we have

$$|a_{n+1} - a_n| < \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}} < \varepsilon$$

as required.

- 4. Give examples of functions $f : \mathbb{Z} \to \mathbb{Z}$ such that
 - (a) f is one-to-one but not onto; Solution: f(n) = 2n.
 - (b) *f* is onto but not one-to-one; **Solution:**

$$f(n) = \begin{cases} n & \text{if } n \text{ is odd,} \\ n/2 & \text{if } n \text{ is even.} \end{cases}$$

- (c) f is a bijection that is not the identity. Solution: f(n) = n + 1.
- 5. Prove or disprove: There exist functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that
 - (a) f is one-to-one but not onto, g is onto but not one-to-one, and $f \circ g$ is a bijection; **Solution:** If f is not onto, then regardless of the range of g, $f \circ g$ cannot be onto, so $f \circ g$ cannot be a bijection.
 - (b) f is onto but not one-to-one, g is one-to-one but not onto, and $f \circ g$ is a bijection. **Solution:** This can be done by squashing \mathbb{R} to the interval (-1, 1) and then stretching it back out to $(-\infty, \infty)$. For example, let

$$g(x) = \frac{x}{1+|x|}$$

$$f(x) \begin{cases} \frac{x}{1-|x|} & |x| < 1\\ 0 & |x| \ge 1. \end{cases}$$

Then g is one-to-one but not onto \mathbb{R} , f is onto \mathbb{R} but not one-to-one, and f(g(x)) = x is a bijection of \mathbb{R} .

- 6. Let U be an uncountable subset of \mathbb{R} , and let $U_n = U \cap [-n, n]$ for each $n \in \mathbb{N}$.
 - (a) Prove that for some $k \in \mathbb{N}$, U_k is uncountable. **Solution:** Suppose U_k is countable for all $k \in \mathbb{N}$. Then $U = \bigcup_{k \in \mathbb{N}} U_k$ is a countable union of countable sets, and hence is countable. $\Rightarrow \Leftarrow$
 - (b) Prove that there is a convergent sequence $\{a_n\}$ such that $a_n \in U$ for all n and $a_n \neq a_m$ whenever $n \neq m$.

Solution: Exploiting part (a), choose $k \in \mathbb{N}$ such that $U_k = U \cap [-k, k]$ is uncountable. In particular, U_k contains countably many distinct points, so there

is a sequence $\{x_n\}$ of distinct points in U_k . But $-k \leq x \leq k$ for all $x \in U_k$, so $-k \leq x_n \leq k$ for all $n \in \mathbb{N}$; thus $\{x_n\}$ is a bounded sequence. Therefore, the Bolzano-Weierstrass theorem implies that $\{x_n\}$ contains a convergent subsequence, say $\{a_n\}$. Moreover, since $\{x_n\}$ is a sequence of distinct points, the subsequence $\{a_n\}$ must also be a sequence of distinct points. \Box

- 7. Let $E = \{x : \sqrt{2} \le x \le \sqrt{3}, x \notin \mathbb{Q}\}.$
 - (a) Prove or disprove: E is open in \mathbb{R} .

Solution: False. Every point in an open set is contained in an open intervals that is a subset of the set. But any open interval containing any point in E contains rational numbers, *i.e.*, points *not* in E.

- (b) Prove or disprove: E is closed in \mathbb{R} . **Solution:** False. $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} . In particular, $\frac{3}{2}$ is an accumulation point of E, but $\frac{3}{2} \notin E$.
- (c) Find the interior of E in \mathbb{R} . **Solution:** $E^{\circ} = \emptyset$. This follows from the argument in part (a).
- (d) Find the closure of E in \mathbb{R} . Solution: $\overline{E} = [\sqrt{2}, \sqrt{3}].$
- (e) Find the boundary of E in \mathbb{R} . Solution: $\partial E = [\sqrt{2}, \sqrt{3}].$
- 8. Prove that the interval [0, 1] is compact, directly from the definitions of the each of the three equivalent characterizations of compactness:
 - (a) [0,1] is closed and bounded;

Solution: If $x \in [0,1]$ then $0 \le x \le 1$, hence [0,1] is bounded. Suppose [0,1] is not closed. Then [0,1] has an accumulation point $x \notin [0,1]$. Hence either x < 0 or x > 1. Suppose x < 0. Then let $\delta = -x/2$ and observe that $(x - \delta, x + \delta)$ is a neighbourhood of x that contains no points of [0,1] other than x itself. Hence x is not an accumulation point of [0,1]. $\Rightarrow \Leftarrow$. Therefore, [0,1] is closed. \Box

(b) [0, 1] has the Bolzano-Weierstrass property;

Solution: This is a special case of the theorem proved in class that any closed and bounded set has the Bolzano-Weierstrass property.

(c) [0,1] has the Heine-Borel property.

Solution: This requires a clever argument, which is a key piece of the proof of the general Heine-Borel theorem. Suppose, in order to derive a contradiction, that [0, 1] does not have the Heine-Borel property, *i.e.*, there is an open cover \mathcal{U} of [0, 1] that contains no finite subcover. Thus, infinitely many sets in \mathcal{U} are required to cover [0, 1]. Consider the two closed subintervals $[0, \frac{1}{2}]$ and $[\frac{1}{2}, 1]$, obtained by bisecting [0, 1]. It must be that at least one of these subintervals cannot be covered by finitely many sets in \mathcal{U} . Call this subinterval I_1 (if neither of the two subintervals can be covered by finitely many sets in \mathcal{U} then it doesn't matter which one we

choose). Now, by a similar argument, we can bisect I_1 and find that one of its two subintervals (call it I_2) cannot be covered by finitely many sets in \mathcal{U} . Continuing inductively, we have a nested sequence of closed intervals

$$[0,1] \equiv I_0 \supset I_1 \supset I_2 \supset \cdots,$$

none of which can be covered by finitely many sets in \mathcal{U} . Note that the length of I_n is $\frac{1}{2^n}$. Now choose a sequence $\{x_n\}$ where $x_k \in I_k$ for each k. Because the intervals are nested and shrink in length to zero, $\{x_n\}$ is a Cauchy sequence, and therefore converges, say $x_n \to L$. Moreover, we must have $L \in I_k$ for all $k \in \mathbb{N}$ (otherwise we could isolate L from I_k for all k large enough, contradicting L being the limit of the sequence). Finally, since $L \in [0, 1]$, there exists $U \in \mathcal{U}$ such that $L \in U$. But for sufficiently large n, we must have $I_n \subset U$, which means I_n is covered by just one set in \mathcal{U} . $\Rightarrow \Leftarrow$ Thus, [0, 1] must have the Heine-Borel property. \Box