Mathematics 3A03 Real Analysis I Fall 2019 ASSIGNMENT 3

This assignment is **due** on **Tuesday 22 October 2019 at 2:25pm**. **PLEASE NOTE** that you must **submit online** via crowdmark. You will receive an e-mail from crowdmark with the required link. Do <u>NOT</u> submit a hardcopy of this assignment.

<u>Note</u>: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Consider the sequence $\{a_n\}$ defined by

 $a_1 = 0.1, \ a_2 = 0.12, \ a_3 = 0.123, \ \dots, \ a_{12} = 0.123456789101112, \ \dots$

Prove that $\{a_n\}$ converges.

- 2. Suppose $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences and let $c_n = |a_n b_n|$ for all n. Prove that $\{c_n\}$ is Cauchy.
- 3. Suppose $\{a_n\}$ is a sequence of real numbers. The following statement looks similar to the Cauchy criterion:

 $\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \forall n \ge N, \ |a_{n+1} - a_n| < \varepsilon.$

Prove that there is a sequence $\{a_n\}$ that satisfies this criterion and yet is not Cauchy.

- 4. Give examples of functions $f : \mathbb{Z} \to \mathbb{Z}$ such that
 - (a) f is one-to-one but not onto;
 - (b) f is onto but not one-to-one;
 - (c) f is a bijection that is not the identity.
- 5. Prove or disprove: There exist functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that
 - (a) f is one-to-one but not onto, g is onto but not one-to-one, and $f \circ g$ is a bijection;
 - (b) f is onto but not one-to-one, g is one-to-one but not onto, and $f \circ g$ is a bijection.
- 6. Let U be an uncountable subset of \mathbb{R} , and let $U_n = U \cap [-n, n]$ for each $n \in \mathbb{N}$.
 - (a) Prove that for some $k \in \mathbb{N}$, U_k is uncountable.
 - (b) Prove that there is a convergent sequence $\{a_n\}$ such that $a_n \in U$ for all n and $a_n \neq a_m$ whenever $n \neq m$.

- 7. Let $E = \{x : \sqrt{2} \le x \le \sqrt{3}, x \notin \mathbb{Q}\}.$
 - (a) Prove or disprove: E is open in \mathbb{R} .
 - (b) Prove or disprove: E is closed in \mathbb{R} .
 - (c) Find the interior of E in \mathbb{R} .
 - (d) Find the closure of E in \mathbb{R} .
 - (e) Find the boundary of E in \mathbb{R} .
- 8. Prove that the interval [0, 1] is compact, directly from the definitions of the each of the three equivalent characterizations of compactness:
 - (a) [0,1] is closed and bounded;
 - (b) [0,1] has the Bolzano-Weierstrass property;
 - (c) [0,1] has the Heine-Borel property.