Mathematics 3A03 Real Analysis I
 Fall 2019 ASSIGNMENT 3

This assignment is due on Tuesday 22 October 2019 at 2:25pm.
PLEASE NOTE that you must submit online via crowdmark. You will receive an e-mail from crowdmark with the required link. Do NOT submit a hardcopy of this assignment.

Note: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{1}=0.1, a_{2}=0.12, a_{3}=0.123, \ldots, a_{12}=0.123456789101112, \ldots
$$

Prove that $\left\{a_{n}\right\}$ converges.
2. Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy sequences and let $c_{n}=\left|a_{n}-b_{n}\right|$ for all n. Prove that $\left\{c_{n}\right\}$ is Cauchy.
3. Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers. The following statement looks similar to the Cauchy criterion:

$$
\forall \varepsilon>0, \exists N \in \mathbb{N} \text { such that } \forall n \geq N,\left|a_{n+1}-a_{n}\right|<\varepsilon
$$

Prove that there is a sequence $\left\{a_{n}\right\}$ that satisfies this criterion and yet is not Cauchy.
4. Give examples of functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that
(a) f is one-to-one but not onto;
(b) f is onto but not one-to-one;
(c) f is a bijection that is not the identity.
5. Prove or disprove: There exist functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that
(a) f is one-to-one but not onto, g is onto but not one-to-one, and $f \circ g$ is a bijection;
(b) f is onto but not one-to-one, g is one-to-one but not onto, and $f \circ g$ is a bijection.
6. Let U be an uncountable subset of \mathbb{R}, and let $U_{n}=U \cap[-n, n]$ for each $n \in \mathbb{N}$.
(a) Prove that for some $k \in \mathbb{N}, U_{k}$ is uncountable.
(b) Prove that there is a convergent sequence $\left\{a_{n}\right\}$ such that $a_{n} \in U$ for all n and $a_{n} \neq a_{m}$ whenever $n \neq m$.
7. Let $E=\{x: \sqrt{2} \leq x \leq \sqrt{3}, x \notin \mathbb{Q}\}$.
(a) Prove or disprove: E is open in \mathbb{R}.
(b) Prove or disprove: E is closed in \mathbb{R}.
(c) Find the interior of E in \mathbb{R}.
(d) Find the closure of E in \mathbb{R}.
(e) Find the boundary of E in \mathbb{R}.
8. Prove that the interval $[0,1]$ is compact, directly from the definitions of the each of the three equivalent characterizations of compactness:
(a) $[0,1]$ is closed and bounded;
(b) $[0,1]$ has the Bolzano-Weierstrass property;
(c) $[0,1]$ has the Heine-Borel property.

