
Mathematics 3A03 Real Analysis I
Winter 2025 ASSIGNMENT 2

Topic: The (Riemann/Darboux) Integral
Participation deadline: Monday 3 February 2025 at 11:25am

The meaning of the participation deadline is that you must answer the multiple choice
questions on childsmath before that deadline in order to receive participation credit for the
assignment. The childsmath poll that you need to fill in for participation credit will be
activated immediately after the last class before the above deadline.

Assignments in this course are graded only on the basis of participation, which you fulfill
by answering the multiple choice questions on childsmath. You will get the same credit for
any question that you answer, regardless of what your answer is. However, please answer
the questions honestly so we obtain accurate statistics on how the class is doing.

You are encouraged to submit full written solutions on crowdmark. If you do so, you will
not be graded on your work, but you will receive feedback that will hopefully help you to
improve your mathematical skills and to prepare for the midterm test and the final exam.

There is no strict deadline for submitting written work on crowdmark for feedback, but
please try to submit your solutions within a few days of the participation deadline so that
the TA’s work is spread out over the term. If you do not submit your solutions within a few
days of the participation deadline then it may not be feasible for the TA to provide feedback
via crowdmark. However, you can always ask for help with any problem during office hours
with the TA or instructor.

You are encouraged to discuss and work on the problems jointly with your classmates,
but remember that you will be working alone on the test and exam. You should attempt
to solve the problems on your own before brainstorming with classmates, looking online, or
asking the TA or instructor for help.

A full solution means either a proof or disproof of each statement that you are asked to
consider when selecting your multiple choice answers.

Full solutions to the problems will be posted by the instructor. You should read the
solutions only after doing your best to solve the problems, but do make sure to read the
instructor’s solutions carefully and ensure you understand them. If you notice any errors in
the solutions, please report them to the instructor by e-mail.

Enjoy working on these problems!
– David Earn
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1. Suppose a < b and f : [a, b] → R is integrable on the closed interval [a, b]. Then:

• f is necessarily integrable on any closed subinterval of [a, b];

◦ There might exist a closed subinterval of [a, b] on which f is not integrable.

Suppose a < c < d < b. We will show that f is integrable on each of the subintervals, [a, c], [c, d],
[d, b] (which covers all possible types of closed subintervals). Since f is integrable on [a, b], given any
ε > 0 we can find a partition P = {t0, . . . , tn} such that

U(f, P ) − L(f, P ) < ε .

Now let Q be the partition of [a, b] that contains all the points of P and (if they are not already in
P ) the points c and d. Since P ⊆ Q, it follows that

U(f, Q) − L(f, Q) ≤ U(f, P ) − L(f, P ) < ε .

Since Q contains c and d, we can break it up in the three parts, Q = Q1 ∪ Q2 ∪ Q3, where (for some
j, k ∈ N)

Q1 = {a, t1, . . . , tj−1, c} ,

Q2 = {c, tj+1, . . . , tk−1, d} ,

Q3 = {d, tk+1, . . . , tn−1, b} .

Consequently,

U(f, Q) = U(f, Q1) + U(f, Q2) + U(f, Q3) ,

L(f, Q) = L(f, Q1) + L(f, Q2) + L(f, Q3) ,

and hence

U(f, Q) − L(f, Q) =
[
U(f, Q1) − L(f, Q1)

]
+

[
U(f, Q2) − L(f, Q2)

]
+

[
U(f, Q3) − L(f, Q3)

]
.

But each of the terms in square brackets is non-negative, and hence each of these terms must itself
be less than ε. Thus, we have found partitions (Q1, Q2 and Q3) of [a, c], [c, d] and [d, b], respectively,
that ensure the difference between the upper and lower sums of f for Qi is less than ε, i.e., f is, in
fact, integrable on each of the three subintervals.

2. Define f : R → R via f(x) = x if x ∈ Q and f(x) = 0 if x ̸∈ Q.

(a) Let P be a partition of [0, 1]. Which of the following statements about L(f, P ) is
true?
• L(f, P ) = 0 for all P ;
◦ L(f, P ) > 0 for all P ;
◦ L(f, P ) > 0 for some P , but not all P ;
◦ L(f, P ) can not be determined for any P .
Regardless of how [0, 1] is partitioned, every subinterval [ti−1, ti] contains irrational numbers,
hence mi = inf{f(x) : x ∈ [ti−1, ti]} = 0 for all i. Consequently, L(f, P ) = 0 for any partition P .
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(b) For convenience, denote inf {U} ≡ inf{U(f, P ) : P a partition of [0, 1]}. Which of
the following statements about inf {U} is correct?
◦ inf {U} = 0;
◦ 0 < inf {U} < 1

2 ;
• inf {U} = 1

2 ;
◦ 1

2 < inf {U} < 1;
◦ inf {U} = 1.
Let P = {t0, t1, . . . , tn} be a partition of [0, 1] (so t0 = 0 and tn = 1). For any i, if ti ∈ Q
then Mi = sup{f(x) : x ∈ [ti−1, ti]} = f(ti) = ti. On the other hand, if ti ̸∈ Q then—since
Q is dense in R—for all ε > 0 there exists δ such that 0 < δ < ε and ti − δ ∈ Q, and hence
f(ti − δ) = ti − δ > ti − ε. Hence Mi = sup{f(x) : x ∈ [ti−1, ti]} = ti. Thus, for any partition P
of [0, 1] we have

U(f, P ) =
n∑

i=1
Mi(ti − ti−1) =

n∑
i=1

ti(ti − ti−1) . (♡)

The contribution of the subinterval [ti−1, ti] to U(f, P ) is ti(ti − ti−1), which is the area of the
rectangle of width ti − ti−1 and height ti. But for all x ∈ [0, 1], f(x) ≤ x, so—intuitively—the
integral cannot be greater than the area of the trapezoid formed by the points

{(ti−1, 0), (ti−1, ti−1), (ti, ti), (ti, 0)} .

The area of this trapezoid is the sum of the areas of a square and a triangle, namely

(ti − ti−1)ti−1 + 1
2(ti − ti−1)2 . (♠)

Motivated by this geometric observation, consider the following purely algebraic argument that
depends only on the fact that ti > ti−1 (which is true for any partition), not on any picture:

ti(ti − ti−1) = [ti − ti−1 + ti−1](ti − ti−1)
= (ti − ti−1)2 + ti−1(ti − ti−1)

≥ 1
2(ti − ti−1)2 + ti−1(ti − ti−1) (compare ♠)

= 1
2(t2

i − 2titi−1 + t2
i−1) + ti−1ti − t2

i−1

= 1
2(t2

i + t2
i−1) − t2

i−1

= 1
2(t2

i − t2
i−1)

Inserting this inequality in (♡), we have

U(f, P ) =
n∑

i=1
ti(ti − ti−1)

≥
n∑

i=1

[1
2(t2

i − t2
i−1)

]
= 1

2
[(

t2
n − t2

n−1
)

+
(
t2
n−1 − t2

n−2
)

+ · · · +
(
t2
1 − t2

0
)]

= 1
2

(
t2
n − t2

0
)

= 1
2

(
12 − 02)

= 1
2
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Thus, U(f, P ) ≥ 1
2 for any partition P of [0, 1]. It therefore follows that

inf {U} ≥ 1
2 . (♣)

We must now show that inf {U} ≤ 1
2 . To that end, consider the particular partition Pn =

{0, 1
n , 2

n , . . . , n
n }, i.e., ti = i

n . From (♡), we have

U(f, Pn) =
n∑

i=1
ti(ti − ti−1) =

n∑
i=1

i

n

( i

n
− i − 1

n

)
=

n∑
i=1

i

n

( 1
n

)
=

n∑
i=1

i

n2 = 1
n2

n∑
i=1

i = 1
n2 · n(n + 1)

2 = 1
2 + 1

2n
,

which implies
inf{U(f, Pn) : n ∈ N} = 1

2 ,

and hence
inf{U(f, P ) : P a partition of [0, 1]} ≤ 1

2 . (♢)

Combining (♢) with (♣), we have inf {U} = 1
2 .

(c) Is f integrable on [0, 1]?
◦ Yes;
• No.
From part (a), L(f, P ) = 0 for all paritions P , so sup{L(f, P )} = 0. Therefore,

sup{L(f, P )} = 0 ̸= 1
2 = inf{U(f, P )},

so f is not integrable.

3. A function is said to be piecewise continuous on an interval if the interval can be
broken into a finite number of subintervals on which the function is continuous on each
open subinterval (i.e., the subinterval without its endpoints) and has a finite limit at
the endpoints of each subinterval.

(a) Suppose f : [a, b] → R is piecewise continuous. Prove whichever statement is
true:
• f is integrable;
◦ f is not necessarily integrable.

Proof. Any piecewise continuous function is bounded, so the infimum m and supremum M of f
exist on any subinterval of [a, b], and hence L(f, P ) and U(f, P ) are well-defined for any partition
P of [a, b].
Suppose first that f has only one point of discontinuity in [a, b], and that it is at the left endpoint
a. As usual, write a generic partition of [a, b] as P = {t0, t1, . . . , tn}, and write

mi = inf{f(x) : ti−1 ≤ x ≤ ti} ,

Mi = sup{f(x) : ti−1 ≤ x ≤ ti} .
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We will choose t1 so that the contribution of the first subinterval to the upper and lower sums is
as small as we like. Also, for any given partition P , we’ll define P ′ = P \ {t0}.
We will first consider the special case in which f(x) is strictly positive and, moreover, bounded
below by a positive number, say K. Thus, 0 < K ≤ f(x) for all x ∈ [a, b], and hence 0 < mi <
Mi for any partition P . Note that this implies, in particular, that 1/Mi is well-defined, and
0 ≤ Mi−mi

Mi
≤ 1 for any i.

Given ε > 0, let
t1 = a + ε

2M1
,

where the motivation for the factor 1
2M1

will become clear below (wlog1 we assume ε is small
enough that t1 < b). In addition, choose t2, . . . , tn so that

U(f, P ′) − L(f, P ′) <
ε

2 ,

which is possible because f is continuous and hence integrable on [t1, tn] = [t1, b]. Then

U(f, P ) − L(f, P ) = M1(t1 − t0) + U(f, P ′) −
(
m1(t1 − t0) + L(f, P ′)

)
= (M1 − m1)(t1 − t0) + U(f, P ′) − L(f, P ′)

= (M1 − m1) ε

2M1
+ U(f, P ′) − L(f, P ′)

= M1 − m1

M1︸ ︷︷ ︸
≤ 1

·ε2 + U(f, P ′) − L(f, P ′)︸ ︷︷ ︸
<

ε

2
<

ε

2 + ε

2
= ε

Therefore, f is integrable on [a, b]. A similar argument shows that f is integrable if it has a
single discontinuity at the right endpoint b. More generally, if f has finitely many points of
discontinuity then we can segment the interval [a, b] into subintervals, each of which contains at
most one discontinuity. f is therefore integrable on each of these subintervals, so the integral
segmentation theorem implies f is integrable on all of [a, b]. Thus, any piecewise continuous
function that is bounded below by a positive number is integrable.
Now consider the more general situation in which f(x) need not be bounded below by a positive
number. f(x) is still bounded on [a, b] (since it is piecewise continuous on [a, b]), so let K =
|inf f(x) : x ∈ [a, b]| + 1 and define g(x) = f(x) + K. Then g(x) is piecewise continuous and
satisfies 1 ≤ g(x), so it is integrable by our analysis above. But any constant function is also
integrable, so by the algebra of integrals theorem, f(x) = g(x) − K is integrable.

(b) Recall that ⌈x⌉ denotes the least integer that is greater than or equal to x. Let
f(x) = ⌈x⌉ for all x ∈ R. Prove whichever of the following statements is true:

◦
∫ 2

0
f = 0;

◦
∫ 2

0
f = 1;

◦
∫ 2

0
f = 2;

1wlog = “without loss of generality”.
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•
∫ 2

0
f = 3;

◦
∫ 2

0
f does not exist, i.e., f is not integrable.

Proof. Since ⌈x⌉ is piecewise continuous, part (a) implies that f is integrable. We need to show
specifically that

∫ 2
0 f = 3. Since f is integrable on [0, 2],

∫ 2
0 f exists and, for any partition P ,

L(f, P ) ≤
∫ 2

0
f ≤ U(f, P ) .

Given any ε > 0, we will construct a specific partition Pε such that

3 − ε ≤ L(f, Pε) ≤
∫ 2

0
f ≤ U(f, Pε) = 3 ,

which will imply the desired result because ε > 0 is arbitrary.
Thus, given ε > 0, define the partition Pε = {t0, t1, t2, t3, t4} where

t0 = 0, t1 = ε

2 , t2 = 1, t3 = 1 + ε

2 , t4 = 2.

As usual, define mi and Mi to be the infimum and supremum, respectively, of f on [ti−1, ti], and
note that if x is an integer then ⌈x⌉ = x. We have

L(f, P ) = m1(t1 − t0) + m2(t2 − t1) + m3(t3 − t2) + m4(t4 − t3)
= 0 · ε

2 + 1
(
1 − ε

2
)

+ 1 · ε
2 + 2

(
1 − ε

2
)

= 1 − ε
2 + ε

2 + 2 − ε
= 3 − ε,

and
U(f, P ) = M1(t1 − t0) + M2(t2 − t1) + M3(t3 − t2) + M4(t4 − t3)

= 1 · ε
2 + 1

(
1 − ε

2
)

+ 2 · ε
2 + 2

(
1 − ε

2
)

= 1 + 2
= 3,

as required.

Additional practice problems

4. Suppose a < b and f is integrable on [a, b]. Prove that∫ b

a
f(x) dx =

∫ b+c

a+c
f(x − c) dx .

(The geometric interpretation should make this very plausible.) Hint: Every partition
P = {t0, . . . , tn} gives rise to a partition P ′ = {t0 + c, . . . , tn + c} of [a + c, b + c], and
conversely.
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Let g(x) = f(x − c) for all x ∈ [a + c, b + c]. Given a partition P = {t0, . . . , tn} of [a, b], let
P ′ = {t0 + c, . . . , tn + c}. Then P ′ is a partition of [a + c, b + c] and we have

L(f, P ) =
n∑

i=1
mi(ti − ti−1) where mi = inf{f(x) : x ∈ [ti−1, ti]}

=
n∑

i=1
mi(ti + c − c − ti−1) where mi = inf{f(x) : x ∈ [ti−1, ti]}

=
n∑

i=1
mi

(
(ti + c) − (ti−1 + c)

)
where mi = inf{f(x) : x ∈ [ti−1, ti]}

=
n∑

i=1
mi

(
(ti + c) − (ti−1 + c)

)
where mi = inf{f(x − c) : x ∈ [ti−1 + c, ti + c]}

=
n∑

i=1
mi

(
(ti + c) − (ti−1 + c)

)
where mi = inf{g(x) : x ∈ [ti−1 + c, ti + c]}

= L(g, P ′) .

Thus, every lower sum of f for a partition P on [a, b] corresponds to a lower sum of g for a partition
P ′ on [a + c, b + c] and vice versa. Consquently,

sup{L(f, P ) : P a parition of [a, b]} = sup{L(g, P ′) : P ′ a parition of [a + c, b + c]} .

Similarly,

inf{U(f, P ) : P a parition of [a, b]} = inf{U(g, P ′) : P ′ a parition of [a + c, b + c]} .

If f is integrable on [a, b], then sup{L(f, P )} = inf{U(f, P )}, from which it follows immediately from
above that sup{L(g, P ′)} = inf{U(g, P ′)}, i.e., g is integrable on [a + c, b + c]. Moreover,∫ b

a

f(x) dx = sup{L(f, P )} = sup{L(g, P ′)} =
∫ b+c

a+c

g(x) dx =
∫ b+c

a+c

f(x − c) dx .

5. Suppose b > 0 and f(x) = x for all x ∈ R. Prove, using either the sup = inf or ε-P
definition of the integral, that f is integrable on [0, b] and∫ b

0
f = b2

2 .

Note: This exercise should help you appreciate the Fundamental Theorem of Calculus.

Proof. To apply the ε-P definition, we need to show that for any given ε > 0 there is a partition P
of [0, b] such that U(f, P ) − L(f, P ) < ε.
Let Pn = {t0, . . . , tn} be a partition of [0, b] into n subintervals of equal length. Thus, ti = ib/n for
each i = 0, 1, . . . , n. In addition, since f(x) = x is an increasing function, we have

mi = inf{f(x) : ti−1 ≤ x ≤ ti} = f(ti−1) = ti−1

(and, similarly, Mi = ti). Therefore,

L(f, Pn) =
n∑

i=1
ti−1(ti − ti−1) =

n∑
i=1

(i − 1)b
n

· b

n

= b2

n2

n∑
i=1

(i − 1) = b2

n2

n−1∑
i=0

i = b2

n2 · (n − 1)n
2 = b2

2 · (n − 1)
n

.
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Similarly,

U(f, Pn) = b2

2 · (n + 1)
n

,

and hence
U(f, Pn) − L(f, Pn) = b2

n
.

Thus, given ε > 0, choose n large enough that b2/n < ε. Then the partition P = Pn satisfies
U(f, P ) − L(f, P ) < ε, proving that f is integrable according to the ε-P definition. Moreover, since

b2

2 · (n − 1)
n

= L(f, Pn) ≤
∫ b

0
f ≤ U(f, Pn) = b2

2 · (n + 1)
n

for all n, it follows that
∫ b

0
f = b2

2 .

Note: If you’re not yet convinced of the power of the Fundamental Theorem of Calculus, try computing∫ b

0
x2 dx directly from the definition of the integral.

6. Answer (and justify your answers) to the following questions, bearing in mind that
lower and upper sums are defined by partitioning a closed interval [a, b] into closed
subintervals, so adjacent subintervals have a point in common. (Note: The definitions
of lower and upper sums, and the Partition Theorem, are your friends for this problem.)

(a) Which functions have the property that every lower sum equals every upper sum?
Suppose a < b and f : [a, b] → R satisfies L(f, P ) = U(f, Q) for all partitions P and Q. Then
this true, in particular, for P = Q = {a, b}. But L(f, {a, b}) = m(b − a) where m = inf{f(x) :
x ∈ [a, b]} and U(f, {a, b}) = M(b − a) where M = sup{f(x) : x ∈ [a, b]}. Therefore m = M ,
i.e., f is constant.

(b) Which functions have the property that some upper sum equals some lower sum?
(Note: The upper and lower sums could be calculated for different partitions.)
Let a < b and f : [a, b] → R. Suppose P1 and P2 are particular partitions of [a, b] with the
property that L(f, P1) = U(f, P2). Consider the partition P = P1 ∪ P2. We know from the
partition lemma and the partition theorem that

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2) .

But L(f, P1) = U(f, P2) by hypothesis, so it follows that L(f, P ) = U(f, P ). Thus, we have
established that if some upper sum equals some lower sum then, in fact, there exists a single
partition P of [a, b] such that the upper and lower sums for P are equal. Write P = {t0, t1, . . . , tn}
as usual, and let mi and Mi be the greatest lower and least upper bounds for f on the closed
subintervals [ti−1, ti], as usual. By definition, we always have mi ≤ Mi for i = 1, . . . , n, so

mi(ti − ti−1) ≤ Mi(ti − ti−1) , i = 1, . . . , n. (∗)

Suppose mj < Mj for some j. Then summing the n inequalities (*) we get L(f, P ) < U(f, P ),
which is a contradiction. Therefore, we must have mi = Mi for all i, i.e., f is constant on each
subinterval [ti−1, ti]. But adjacent subintervals have a point in common, so if f constant on
all subintervals, the constant value must be the same on each subinterval, i.e., f is a constant
function on the entire interval [a, b].
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(c) Which continuous functions have the property that all lower sums are equal?
Since all lower sums are equal, they are equal to L(f, {a, b}) = m(b − a), where m = inf{f(x) :
x ∈ [a, b]}. Suppose that f is not a constant function. Then, since m is a lower bound for f

on [a, b], there exists u ∈ [a, b] such that f(u) > m. Consequently, since f is continuous, the
neighbourhood sign lemma (applied to the point u) implies that we can choose some partition
P = {t0, t1, . . . , tn} such that f(x) > m on a subinterval [ti−1, ti]. But then L(f, P ) > m(b − a).
⇒⇐ Hence f must be constant.

(d) (Warning: much more challenging) Which integrable functions have the prop-
erty that all lower sums are equal?
Hint: A set S is dense in [a, b] if every open subinterval of [a, b] contains a point
of S. Begin by showing that if f is integrable on [a, b] and all lower sums are equal
then f(x) = m on a dense subset of [a, b] (where m = inf{f(x) : x ∈ [a, b]}).
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