Mathematics 3A03 Real Analysis I Fall 2019 ASSIGNMENT 2 (Solutions)

This assignment was due on Tuesday 1 October 2019 at 2:25pm via crowdmark.

1. Use the formal definition of a limit of a sequence to prove that
(a) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$;

Solution: Given $\varepsilon>0$, we need to find $N \in \mathbb{N}$ such that $\forall n \geq N,|1 / \sqrt{n}|<\varepsilon$. In order to figure out how to choose N, suppose $|1 / \sqrt{n}|<\varepsilon$. Then $1 / n<\varepsilon^{2}$, i.e., $n>1 / \varepsilon^{2}$. Therefore, given $\varepsilon>0$, choose $N=\left\lceil 1 / \varepsilon^{2}\right\rceil+1$. Then

$$
\begin{aligned}
N & >\left\lceil\frac{1}{\varepsilon^{2}}\right\rceil \geq \frac{1}{\varepsilon^{2}} \\
\Longrightarrow \sqrt{N} & >\frac{1}{\varepsilon} \\
\Longrightarrow & \frac{1}{\sqrt{N}}<\varepsilon \\
\Longrightarrow & \frac{1}{\sqrt{n}}<\varepsilon \quad \forall n \geq N \\
\Longrightarrow & \left|\frac{1}{\sqrt{n}}\right|<\varepsilon \quad \forall n \geq N
\end{aligned}
$$

as required.
(b) $\lim _{n \rightarrow \infty} \frac{n^{n}-1}{n^{n}+1}=1$.

Solution: Given $\varepsilon>0$ we must show $\exists N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\frac{n^{n}-1}{n^{n}+1}-1\right|<\varepsilon \quad \forall n \geq N . \tag{*}
\end{equation*}
$$

In order to determine how to choose N, consider that $\forall n \in \mathbb{N}$

$$
\begin{align*}
\left|\frac{n^{n}-1}{n^{n}+1}-1\right| & =\left|\frac{\left(n^{n}-1\right)-\left(n^{n}+1\right)}{n^{n}+1}\right|=\left|-\frac{2}{n^{n}+1}\right| \tag{Q}\\
& =\frac{2}{n^{n}+1}<\frac{2}{n+1}<\frac{2}{n}
\end{align*}
$$

Moreover, if $N \in \mathbb{N}$ then $\forall n \geq N$ we have

$$
\frac{2}{n} \leq \frac{2}{N}
$$

Consequently, to ensure that $\left(^{*}\right)$ holds, it is sufficient to have $2 / N<\varepsilon$, i.e., $N>2 / \varepsilon$.

Therefore, given $\varepsilon>0$, choose $N=\lceil 2 / \varepsilon\rceil+1$. Then, using ($(\mathcal{)}$) and ($\boldsymbol{\uparrow})$, we have, for all $n \geq N$,

$$
\left|\frac{n^{n}-1}{n^{n}+1}-1\right|<\frac{2}{n}<\frac{2}{N}<\varepsilon
$$

as required.
2. Use the formal definition to prove that the following sequences $\left\{a_{n}\right\} \underline{\text { diverge }}$ as $n \rightarrow \infty$.
(a) $a_{n}=\sqrt{n}$;

Solution: Suppose, in order to derive a contradiction, that $\sqrt{n} \rightarrow L$ for some $L \in \mathbb{R}$. Then, given $\varepsilon>0$, we can find $N \in \mathbb{N}$ such that $\forall n \geq N$,

$$
|\sqrt{n}-L|<\varepsilon \Longrightarrow-\varepsilon<\sqrt{n}-L<\varepsilon \Longrightarrow L-\varepsilon<\sqrt{n}<L+\varepsilon \quad(* *)
$$

If $L \leq-\varepsilon$ then $L+\varepsilon \leq 0$ and we have a contradiction (because the right hand inequality cannot be satisfied for any $n \in \mathbb{N}$). So it must be that $L>-\varepsilon$, i.e., $L+\varepsilon>0$. Now, since $\left(^{* *}\right)$ holds $\forall n \geq N$, it must hold in particular for $n=$ $\max \left(N,(\lceil L+\varepsilon\rceil+1)^{2}\right)$. But then $\sqrt{n} \geq\lceil L+\varepsilon\rceil+1>L+\varepsilon$, contradicting $\left({ }^{* *}\right)$. $\Rightarrow \Leftarrow$
Note: The intention was to work directly from the definition of divergence, but another (simpler) proof could exploit the theorem that convergent sequences are necessarily bounded.
(b) $a_{n}=n^{1 / k} \quad$ (for fixed $k \in \mathbb{N}$).

Solution: Suppose, in order to derive a contradiction, that $n^{1 / k} \rightarrow L$ for some $L \in \mathbb{R}$. Then, given $\varepsilon>0$, we can find $N \in \mathbb{N}$ such that $\forall n \geq N$,

$$
\left|n^{1 / k}-L\right|<\varepsilon \Longrightarrow-\varepsilon<n^{1 / k}-L<\varepsilon \Longrightarrow L-\varepsilon<n^{1 / k}<L+\varepsilon
$$

Now, as in part (a), we must have $L+\varepsilon>0$. Then $\forall n \geq N$, we have $n<(L+\varepsilon)^{k}$. Thus, the set of natural numbers $\{N, N+1, N+2, \ldots\}$ is bounded above by $(L+\varepsilon)^{k}$, contradicting the Archimedean property. $\Rightarrow \Leftarrow$
Note: We could have used the Archimedean property in part (a), or a variant of the argument in part (a) here. I have purposely given slightly different arguments in order to emphasize that distinct arguments can be used to prove a given proposition.
3. (a) Prove that $\lim _{n \rightarrow \infty} a_{n}=0$ if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$.

Solution: Suppose $a_{n} \rightarrow L$. Given $\varepsilon>0$, choose $N \in \mathbb{N}$ such that $\forall n \geq N$, $\left|a_{n}-L\right|<\varepsilon$. But for any $x, y \in \mathbb{R}$, we know from the triangle inequalityas proved in question 3c of Assignment 1-that $\| x|-|y|| \leq|x-y|$. Therefore, $\forall n \geq N,\left|\left|a_{n}\right|-|L|\right| \leq\left|a_{n}-L\right|<\varepsilon$. Thus, $\left|a_{n}\right| \rightarrow|L|$, as required.
(b) Give an example to show that convergence of $\left\{\left|a_{n}\right|\right\}$ need not imply convergence of $\left\{a_{n}\right\}$.
Solution: Let $\left\{a_{n}\right\}=(-1)^{n}$. Then $\left\{\left|a_{n}\right|\right\}=1$ for all n and hence converges, yet $\left\{a_{n}\right\}$ itself diverges.
4. Suppose $\lim _{n \rightarrow \infty} a_{n}=a$ and $a>0$. Prove that
(a) $\exists N \in \mathbb{N}$ such that $a_{n}>0, \forall n \geq N$;

Solution: Given any $\varepsilon>0$ we can find $N \in \mathbb{N}$ such that $\forall n \geq N,\left|a_{n}-a\right|<\varepsilon$. In particular, consider $\varepsilon=a / 2$. Then $\exists N \in \mathbb{N}$ such that $\forall n \geq N$,

$$
\left|a_{n}-a\right|<\frac{a}{2} \Longrightarrow-\frac{a}{2}<a_{n}-a<\frac{a}{2} \Longrightarrow \frac{a}{2}<a_{n}<\frac{3 a}{2} .
$$

But $a>0$, so it follows that $a_{n}>0 \forall n \geq N$.
(b) $\exists N^{\prime} \in \mathbb{N}$ such that $\frac{1}{2} a<a_{n}<2 a, \forall n \geq N^{\prime}$.

Solution: Since $\frac{3 a}{2}<2 a$ for any $a>0$, this follows immediately from part (a). Just take $N^{\prime}=N$.

