
Mathematics 3A03 Real Analysis I

Fall 2019 ASSIGNMENT 2 (Solutions)

This assignment was due on Tuesday 1 October 2019 at 2:25pm via crowdmark.

1. Use the formal definition of a limit of a sequence to prove that

(a) lim
n→∞

1√
n

= 0 ;

Solution: Given ε > 0, we need to find N ∈ N such that ∀n ≥ N , |1/
√
n| < ε.

In order to figure out how to choose N , suppose |1/
√
n| < ε. Then 1/n < ε2, i.e.,

n > 1/ε2. Therefore, given ε > 0, choose N = d1/ε2e+ 1. Then

N >

⌈
1

ε2

⌉
≥ 1

ε2

=⇒
√
N >

1

ε

=⇒ 1√
N

< ε

=⇒ 1√
n
< ε ∀n ≥ N

=⇒
∣∣∣∣ 1√

n

∣∣∣∣ < ε ∀n ≥ N,

as required.

(b) lim
n→∞

nn − 1

nn + 1
= 1.

Solution: Given ε > 0 we must show ∃N ∈ N such that∣∣∣∣nn − 1

nn + 1
− 1

∣∣∣∣ < ε ∀n ≥ N. (∗)

In order to determine how to choose N , consider that ∀n ∈ N∣∣∣∣nn − 1

nn + 1
− 1

∣∣∣∣ =

∣∣∣∣(nn − 1)− (nn + 1)

nn + 1

∣∣∣∣ =

∣∣∣∣− 2

nn + 1

∣∣∣∣
=

2

nn + 1
<

2

n + 1
<

2

n
.

(♥)

Moreover, if N ∈ N then ∀n ≥ N we have

2

n
≤ 2

N
. (♠)

Consequently, to ensure that (*) holds, it is sufficient to have 2/N < ε, i.e.,
N > 2/ε.
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Therefore, given ε > 0, choose N = d2/εe+ 1. Then, using (♥) and (♠), we have,
for all n ≥ N , ∣∣∣∣nn − 1

nn + 1
− 1

∣∣∣∣ < 2

n
<

2

N
< ε ,

as required.

2. Use the formal definition to prove that the following sequences {an} diverge as n→∞.

(a) an =
√
n;

Solution: Suppose, in order to derive a contradiction, that
√
n → L for some

L ∈ R. Then, given ε > 0, we can find N ∈ N such that ∀n ≥ N ,∣∣√n− L
∣∣ < ε =⇒ −ε <

√
n− L < ε =⇒ L− ε <

√
n < L + ε (∗∗)

If L ≤ −ε then L + ε ≤ 0 and we have a contradiction (because the right hand
inequality cannot be satisfied for any n ∈ N). So it must be that L > −ε, i.e.,
L + ε > 0. Now, since (**) holds ∀n ≥ N , it must hold in particular for n =
max(N, (dL + εe + 1)2). But then

√
n ≥ dL + εe + 1 > L + ε, contradicting (**).

⇒⇐
Note: The intention was to work directly from the definition of divergence, but
another (simpler) proof could exploit the theorem that convergent sequences are
necessarily bounded.

(b) an = n1/k (for fixed k ∈ N).

Solution: Suppose, in order to derive a contradiction, that n1/k → L for some
L ∈ R. Then, given ε > 0, we can find N ∈ N such that ∀n ≥ N ,∣∣n1/k − L

∣∣ < ε =⇒ −ε < n1/k − L < ε =⇒ L− ε < n1/k < L + ε .

Now, as in part (a), we must have L+ ε > 0. Then ∀n ≥ N , we have n < (L+ ε)k.
Thus, the set of natural numbers {N,N + 1, N + 2, . . . } is bounded above by
(L + ε)k, contradicting the Archimedean property. ⇒⇐
Note: We could have used the Archimedean property in part (a), or a variant
of the argument in part (a) here. I have purposely given slightly different argu-
ments in order to emphasize that distinct arguments can be used to prove a given
proposition.

3. (a) Prove that lim
n→∞

an = 0 if and only if lim
n→∞

|an| = 0.

Solution: Suppose an → L. Given ε > 0, choose N ∈ N such that ∀n ≥ N ,
|an − L| < ε. But for any x, y ∈ R, we know from the triangle inequality—
as proved in question 3c of Assignment 1—that ||x| − |y|| ≤ |x− y|. Therefore,
∀n ≥ N , ||an| − |L|| ≤ |an − L| < ε. Thus, |an| → |L|, as required.

(b) Give an example to show that convergence of {|an|} need not imply convergence
of {an}.

Solution: Let {an} = (−1)n. Then {|an|} = 1 for all n and hence converges, yet {an}
itself diverges.
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4. Suppose lim
n→∞

an = a and a > 0. Prove that

(a) ∃N ∈ N such that an > 0, ∀n ≥ N ;

Solution: Given any ε > 0 we can find N ∈ N such that ∀n ≥ N , |an − a| < ε.
In particular, consider ε = a/2. Then ∃N ∈ N such that ∀n ≥ N ,

|an − a| < a

2
=⇒ −a

2
< an − a <

a

2
=⇒ a

2
< an <

3a

2
.

But a > 0, so it follows that an > 0 ∀n ≥ N .

(b) ∃N ′ ∈ N such that 1
2
a < an < 2a, ∀n ≥ N ′.

Solution: Since
3a

2
< 2a for any a > 0, this follows immediately from part (a).

Just take N ′ = N .
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