Mathematics 3A03 Real Analysis I Fall 2019 ASSIGNMENT 2

This assignment is **due** on **Tuesday 1 October 2019 at 2:25pm**. **PLEASE NOTE** that you must **submit online** via crowdmark. You will receive an e-mail from crowdmark with the required link. Do **NOT** submit a hardcopy of this assignment.

<u>Note</u>: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

- 1. Use the formal definition of a limit of a sequence to prove that
 - (a) $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 ;$ (b) $\lim_{n \to \infty} \frac{n^n - 1}{n^n + 1} = 1.$
- 2. Use the formal definition to prove that the following sequences $\{a_n\}$ <u>diverge</u> as $n \to \infty$.
 - (a) $a_n = \sqrt{n};$
 - (b) $a_n = n^{1/k}$ (for fixed $k \in \mathbb{N}$).
- 3. (a) Prove that $\lim_{n \to \infty} a_n = 0$ if and only if $\lim_{n \to \infty} |a_n| = 0$.
 - (b) Give an example to show that convergence of $\{|a_n|\}$ need not imply convergence of $\{a_n\}$.
- 4. Suppose $\lim_{n \to \infty} a_n = a$ and a > 0. Prove that
 - (a) $\exists N \in \mathbb{N}$ such that $a_n > 0, \forall n \ge N$;
 - (b) $\exists N' \in \mathbb{N}$ such that $\frac{1}{2}a < a_n < 2a, \forall n \ge N'$.