
Mathematics 3A03 Real Analysis I

Fall 2019 ASSIGNMENT 1 (Solutions)

This assignment was due on Tuesday 17 September 2019 at 2:25pm via crowdmark.

Note: Not all questions will be marked. The questions to be
marked will be determined after the assignment is due.

1. Prove or disprove:
√

3/2 is irrational.

Solution: Suppose, in order to derive a contradiction, that
√

3/2 is rational. Then
∃m,n ∈ N such that gcd(m,n) = 1 and√

3

2
=

m

n
=⇒ 3

2
=

m2

n2

=⇒ 3n2 = 2m2

=⇒ 3n2 is even

=⇒ n2 is even (∵ 3× (2k + 1) = 6k + 3 = 2(3k + 1) + 1, which is odd)

=⇒ n is even (∵ (2k + 1)2 = 4k2 + 4k + 1 = 2(k2 + 2k) + 1, which is odd)

=⇒ n = 2k for some k ∈ N
=⇒ 3(2k)2 = 2m2

=⇒ 4× 3k2 = 2m2

=⇒ 2× 3k2 = m2

=⇒ m is even.

Thus, m and n are both even, contradicting gcd(m,n) = 1. Therefore,
√

3/2 is not
rational.

2. What is wrong with the following “proof”? Let x = y. Then

x2 = xy,

x2 − y2 = xy − y2,

(x + y)(x− y) = y(x− y),

x + y = y,

2y = y,

2 = 1.

Solution: In the 4th line, we divided by zero (since x = y).

3. Prove the following:

(a) |x− y| ≤ |x|+ |y|. (Give a very short proof.)

Solution: From the triangle inequality, we have
|x− y| = |x + (−y)| ≤ |x|+ |−y| = |x|+ |y|.
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(b) |x| − |y| ≤ |x− y|. (A very short proof is possible, if you write things in the right
way.)

Solution: |x| = |x− y + y| ≤ |x− y|+ |y| =⇒ |x| − |y| ≤ |x− y|.
(c) |(|x| − |y|)| ≤ |x− y|. (Why does this follow immediately from (3b)?)

Solution: If |x| ≥ |y| then (3b) implies |(|x| − |y|)| ≤ |x− y|, whereas if |x| ≤ |y|
then (3b) implies |y| − |x| ≤ |y− x|, i.e., −(|x| − |y|) ≤ |x− y|, i.e., |(|x| − |y|)| ≤
|x− y|.
Further note: Since it will be useful in the next part, note that if x and y have
opposite signs then the inequality is strict, i.e., |(|x| − |y|)| < |x− y|. In particular,
suppose x > 0 and y < 0. If |x| ≥ |y|, then

||x| − |y|| = |x| − |y| < |x|+ |y| = x + (−y) = |x + (−y)| = |x− y|,
whereas if |x| < |y| then

||x| − |y|| = |y| − |x| < |y|+ |x| = y + (−x) = |y + (−x)| = |y − x| = |x− y|.

(d) |x + y + z| ≤ |x| + |y| + |z|. (Indicate when equality holds, and prove your state-
ment.)

Solution: Applying the triangle inequality twice we have

|x + y + z| = |(x + y) + z| ≤ |x + y|+ |z| ≤ |x|+ |y|+ |z|.
If x, y, z ≥ 0 then |x + y + z| = x + y + z = |x|+ |y|+ |z|. Similarly, if x, y, z ≤ 0
then |x + y + z| = −(x + y + z) = (−x) + (−y) + (−z) = |x| + |y| + |z|. Thus,
equality holds if x, y, z are either all non-negative or all non-positive. Now suppose
x, y, z are neither all non-negative nor all non-positive, which implies at least two
of x, y, z are non-zero (why?), say x, y 6= 0. Suppose, in particular, that x > 0 and
y < 0. Then

|x + y + z| = |x− (−y) + z|
≤ |x− (−y)|+ |z| (triangle inequality)

= ||x| − |y||+ |z|
< |x− y|+ |z| (3c) with strict inequality ∵ x, y have opposite signs

≤ |x|+ |y|+ |z| (3a).

Thus, equality holds if and only if x, y, z are all non-negative or all non-positive.

4. Prove by induction that if x > −1 then (1 + x)n ≥ 1 + nx for all n ∈ N.

Solution: Let P (n) be the proposition that “if x > −1 then (1 +x)n ≥ 1 +nx”. P (1)
says that for x > −1, (1+x)1 ≥ 1+1·x. In this case, we actually have equality, so P (1)
is true. Now suppose P (k) is true for some k ∈ N, i.e., if x > −1 then (1+x)k ≥ 1+kx.
Then, given x > −1 (so 1 + x > 0), we have

(1 + x)k+1 = (1 + x)(1 + x)k

≥ (1 + x)(1 + kx) (∵ x > −1 so we can apply P (k))

= 1 + (k + 1)x + kx2

≥ 1 + (k + 1)x (∵ kx2 ≥ 0),
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so P (k + 1) is true. Hence, by the the Principle of Mathematical Induction, P (n) is
true for all n ∈ N.

5. For each of the following sets, find the greatest lower bound (inf), least upper bound
(sup), minimum (min) and maximum (max), if they exist. If any of these do not exist,
then indicate accordingly. Justify your assertions.

(a) (1, 2) ∪ (2, 3] ∪ (−3,−2] ∪ (−2,−1).

(b) {pq : p, q prime}.
(c) {x ∈ R : x < 1/x}.

Solution: The answers to the questions are most easily summarized in a table:

Set inf sup min max

(a) (1, 2) ∪ (2, 3] ∪ (−3,−2] ∪ (−2,−1) −3 3 @ 3

(b) {pq : p, q prime} 4 @ 4 @

(c) {x ∈ R : x < 1/x} @ 1 @ @

To justify the entries in this table, consider the following:

(a) The set is more transparently written as (−3,−1) ∪ (1, 3] \ {2}.
(b) The smallest prime is 2, so the minimum is 22 = 4. There is no largest prime, so

the set is not bounded above.

(c) Denote the set by E. We know 0 /∈ E because the condition x < 1/x is meaningless
for x = 0. If x > 0 then x · x < x · 1/x, i.e., x2 < 1, so x < 1. If x < 0 then
x · x > x · 1/x, i.e., x2 > 1, which implies (since x < 0) that x < −1. Thus
E = (−∞,−1) ∪ (0, 1). (If this is surprising to you, draw the functions 1/x and
x.)

6. Suppose A and B are bounded subsets of R. Prove that A ∪ B is bounded and
sup(A ∪B) = sup{supA, supB}.
Solution: The intention of the problem was to consider non-empty sets A and B. So,
we will assume A 6= ∅ 6= B. Then, since A is bounded, it has a least upper bound
(supA) and a greatest lower bound (inf A), so we have

inf A ≤ a ≤ supA ∀a ∈ A.

Similarly, since B is bounded (and non-empty), we have

inf B ≤ b ≤ supB ∀b ∈ B.

Let m = min(inf A, inf B) and M = max(supA, supB) (note that m and M exist since
we are just picking the minimum or maximum of two real numbers). It follows that

m ≤ a ≤M ∀a ∈ A,

m ≤ b ≤M ∀b ∈ B,
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and hence
m ≤ x ≤M ∀x ∈ A ∪B.

Thus A ∪B is bounded.

Note that M = sup(supA, supB), since the supremum and maximum are the same
thing for a finite set of points. Moreover, either supA ≤ supB or supB ≤ supA.
Suppose that supA ≤ supB, and hence that M = supB. Now suppose further, in
order to derive a contradiction, that sup(A∪B) < M , i.e., sup(A∪B) < supB. Then
there must exist b ∈ B such that x < b for all x ∈ A∪B. But B ⊆ A∪B so b ∈ A∪B,
and hence b < b. ⇒⇐ The argument is similar if supB ≤ supA, so we can conclude
that sup(A ∪ B) ≥ M . A similar argument allows us to rule out the possibility that
sup(A ∪ B) > M , so we have finally that sup(A ∪ B) = M = sup{supA, supB}, as
required.
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