Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 6 (Solutions)

This assignment wass due on Monday 8 April 2019 at 11:25am.

1. Suppose f is continuous on $[a, b]$. Prove that

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Solution: Let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$, let

$$
\begin{aligned}
m_{i} & =\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \\
m_{i}^{\prime} & =\inf \left\{|f(x)|: x \in\left[t_{i-1}, t_{i}\right]\right\}
\end{aligned}
$$

and define M_{i} and M_{i}^{\prime} similarly using sup rather than inf. Then $m_{i} \leq m_{i}^{\prime}$ and $M_{i} \leq M_{i}^{\prime}$ for all i and hence

$$
\begin{aligned}
L(f, P) & \leq L(|f|, P) \\
U(f, P) & \leq U(|f|, P)
\end{aligned}
$$

Since this is true for all partitions P, we have

$$
\begin{aligned}
\sup \{L(f, P)\} & \leq \sup \{L(|f|, P)\} \\
\inf \{U(f, P)\} & \leq \inf \{U(|f|, P)\}
\end{aligned}
$$

Now, since f is continuous, $|f|$ is also continuous. Moreover, since any continuous function is integrable, we have $\sup \{L(f, P)\}=\inf \{U(f, P)\}=\int_{a}^{b} f$ and $\sup \{L(|f|, P)\}=$ $\inf \{U(|f|, P)\}=\int_{a}^{b}|f|$. Hence $\int_{a}^{b} f \leq \int_{a}^{b}|f|$.
2. Prove that if $f(x)=\int_{0}^{x} f(t) d t$ then $f=0$.

Hint: First prove that f is differentiable and $f^{\prime}(x)=f(x)$. Then consider the derivative of the function $g(x)=f(x) / e^{x}$.
Solution: First note that f is continuous everywhere since it is defined as the integral of a function (itself, as it happens). But then from the (First) Fundamental Theorem of Calculus, f is differentiable everywhere since is it the integral of a continuous function (itself, as it happens), and $f^{\prime}(x)=f(x)$ for all x.
Now consider $g(x)=f(x) / e^{x}$, which is well defined because $e^{x}>0$ for all $x \in \mathbb{R}$. Since f and \exp are both differentiable for all x, we can use the quotient rule to obtain

$$
g^{\prime}(x)=\frac{e^{x} f^{\prime}(x)-f(x) e^{x}}{e^{2 x}}=\frac{e^{x} f(x)-f(x) e^{x}}{e^{2 x}}=0, \quad \text { for all } x
$$

Therefore, (from 2016 Assignment 5) there exists $c \in \mathbb{R}$ such that $g(x)=c$, i.e., $f(x)=c e^{x}$. But $f(0)=\int_{0}^{0} f=0$, hence $f=0$.
3. Consider the sequence of functions $\left\{f_{n}\right\}$, where

$$
f_{n}(x)=\frac{1}{n\left(1+n x^{2}\right)}, \quad x \in \mathbb{R}
$$

(a) For which $x \in \mathbb{R}$ does the series of functions $\sum_{n=1}^{\infty} f_{n}(x)$ converge pointwise?

Solution: For $x=0$ we have $\sum_{n=1}^{\infty} f_{n}(0)=\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges. For any $x \neq 0$, we have

$$
0<\sum_{n=1}^{\infty} \frac{1}{n\left(1+n x^{2}\right)}<\sum_{n=1}^{\infty} \frac{1}{n\left(n x^{2}\right)}=\frac{1}{x^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}},
$$

which converges, so $\sum_{n=1}^{\infty} f_{n}(x)$ converges pointwise (by the comparison test) for all $x \neq 0$.
(b) For which $a, b \in \mathbb{R}(a<b)$ does the series of functions $\sum_{n=1}^{\infty} f_{n}$ converge uniformly on $[a, b]$ to a continuous function?
Solution: From part (a) we know that any interval $[a, b]$ on which the series of functions converges uniformly cannot include $x=0$. Hence either $a>0$ or $b<0$. Suppose $a>0$. Then let

$$
M_{n}=\frac{1}{a^{2} n^{2}}
$$

and note that $\sum_{n=1}^{\infty} M_{n}$ converges (e.g., by the ratio test). Hence, by the Weierstrass M-test, $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on $[a, b]$ to a function f, and since each f_{n} is continuous the uniform limit is also continuous. A similar argument establishes the result for $b<0$, so the series converges uniformly to a continuous function on any closed interval not containing 0 .
(c) For which $a, b \in \mathbb{R}(a<b)$ does the series of functions $\sum_{n=1}^{\infty} f_{n}$ converge uniformly on $[a, b]$ to a differentiable function f ? For such a, b, is f^{\prime} necessarily the uniform limit of $\sum_{n=1}^{\infty} f_{n}^{\prime}$?
Solution: Again, since the series does not converge pointwise at $x=0$, we must restrict attention to $a>0$ or $b<0$. Again, suppose $a>0$. To apply the theorem on differentiability and uniform convergence, note that

- $f_{n}^{\prime}(x)=-\frac{2 x}{\left(1+n x^{2}\right)^{2}}$, so each f_{n}^{\prime} is continuous on $[a, b]$ (in fact on \mathbb{R}).
- For $x \geq a>0$,

$$
\left|f_{n}^{\prime}(x)\right|=\frac{2|x|}{\left(1+n x^{2}\right)^{2}}<\frac{2|x|}{\left(n x^{2}\right)^{2}}=\frac{2|x|}{n^{2} x^{4}}=\frac{2}{|x|^{3}} \cdot \frac{1}{n^{2}} \leq \frac{2}{a^{3}} \cdot \frac{1}{n^{2}} .
$$

Hence, taking $M_{n}=2 /\left(a^{3} n^{2}\right)$, the Weierstrass M-test implies that $\sum_{n=1}^{\infty} f_{n}^{\prime}$ converges uniformly on $[a, b]$.

- We already know from part (b) that $\sum_{n=1}^{\infty} f_{n}$ converges pointwise to a continuous function f.

Consequently, if $a>0$ then f is differentiable on $[a, b]$ and $f^{\prime}=\sum_{n=1}^{\infty} f_{n}^{\prime}\left(i . e ., f^{\prime}\right.$ is the uniform limit of $\left.\sum_{n=1}^{\infty} f_{n}^{\prime}\right)$. In addition, the argument is similar if $b<0$, so the result is true for any closed interval not containing 0.
(d) Rather than closed, finite intervals $[a, b]$, consider infinite open intervals (a, ∞). Answer parts (b) and (c) again after revising them to read "For which $a \in \mathbb{R}$ does the series... converge uniformly on (a, ∞) to...".
Solution: The Weierstrass M-test relates to any domain $D \subseteq \mathbb{R}$. It is not necessary that D be a closed interval, or indeed any sort of interval. The arguments in parts (b) and (c) apply equally well to (a, ∞) for $a>0$ or $(-\infty, b)$ for $b<0$. Thus, the answer to the question posed is "any $a>0$ ".

