Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 5 (Solutions)

This assignment was due on Monday 25 March 2019 at 11:25am.

1. Classify the discontinuities of the rational function

$$f(x) = \begin{cases} \frac{x+1}{x^2 - 1}, & x \neq \pm 1, \\ c_1, & x = 1, \\ c_2, & x = -1. \end{cases}$$

<u>Note</u>: See the textbook (TBB, §5.9.1, p. 331) for the definitions of removable, jump and essential discontinuities.

Solution: For $x \neq \pm 1$, we have

$$f(x) = \frac{x+1}{x^2-1} = \frac{x+1}{(x+1)(x-1)} = \frac{1}{x-1}, \qquad x \neq \pm 1.$$

The function 1/(x-1) is continuous except at x=1 so f is certainly continuous for $x \neq \pm 1$. Moreover,

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{1}{x - 1} = -\frac{1}{2},$$

so if $c_2 = -\frac{1}{2}$ then f is also continuous at x = -1. If $c_2 \neq -\frac{1}{2}$ then f is discontinuous at x = -1, but since f(x) does have a limit as $x \to -1$ this discontinuity is removable (simply change the value of c_2 to be $-\frac{1}{2}$). On the other hand,

$$\lim_{x \to 1^{\pm}} f(x) = \lim_{x \to 1^{\pm}} \frac{1}{x - 1} = \pm \infty.$$

Since neither the right hand nor left hand limit exists, f has an essential discontinuity at x = 1.

2. Suppose that f is a function on a closed domain D, and let E = f(D) be the range of f. Prove that f is continuous on D if and only if the inverse image of every closed set is closed.

<u>Note</u>: The inverse image of a set A is the set of all points in the domain of f that are mapped into A, *i.e.*, $f^{-1}(A) = \{x \in D : f(x) \in A\}$.

<u>Note</u>: Problem 1(b) on 2016 Assignment 5 showed that a continuous function does not necessarily map closed sets to closed sets.

Solution: The key to the solution given here is to use the sequence definition of continuity.

- Suppose f is continuous on D, $A \subseteq E$ and A is closed. We must show that $f^{-1}(A)$ is a closed subset of D. If $f^{-1}(A)$ has no accumulation points then it is closed and we are done. Therefore, assume the set of accumulation points of $f^{-1}(A)$ is non-empty and let x_* be an accumulation point of $f^{-1}(A)$. Since D is closed we know $x_* \in D$. Moreover, since x_* is an accumulation point of $f^{-1}(A)$, there is a sequence $\{x_n\} \subseteq f^{-1}(A) \subseteq D$ that converges to x_* . But f is continuous on D, so $x_n \to x_*$ implies $f(x_n) \to f(x_*)$. Now, since $\{f(x_n)\}$ is a sequence in $f(f^{-1}(A)) = A$, and A is closed, we must have $f(x_*) \in A$. Hence $x_* \in f^{-1}(A)$. Therefore, since x_* was an arbitrary accumulation point of $f^{-1}(A)$, we have established that $f^{-1}(A)$ is closed.
- Euppose $f: D \to E$ and the inverse image under f of every closed subset of E is a closed subset of E. We must show that E is continuous on E. Let E is a closed subset of E be a sequence that converges to a point E is close E. We must show that this sequence converges to E is suppose not. Then there exists E is an an a subsequence E is closed in E is closed in E. We do not know if the set E is closed; however, its closure E is certainly closed, and yet E is closed; however, its closure E is certainly closed, and yet E is must not contain E is closed point E is certainly closed, and yet E is from E is closed; however, its closure E is certainly closed, and yet E is closed; however, its closure E is certainly closed, and yet E is must not contain E is closed by assumption, and it is always true that E inverse image E is closed by assumption, and it is always true that E is closed.

$$f^{-1}(\overline{\{f(x_{n_k})\}}) \supseteq f^{-1}(\{f(x_{n_k})\}) \supseteq \{x_{n_k}\}.$$

Now note that $x_{n_k} \to x_*$ implies $x_* \in \overline{\{x_{n_k}\}}$, and since the set $f^{-1}(\overline{\{f(x_{n_k})\}})$ on the left above is closed and contains $\{x_{n_k}\}$, it must also contain the accumulation point x_* . Thus, $x_* \in f^{-1}(\overline{\{f(x_{n_k})\}})$ and hence $f(x_*) \in f(f^{-1}(\overline{\{f(x_{n_k})\}})) = \overline{\{f(x_{n_k})\}}$, contradicting our inference above that $f(x_*) \notin \overline{\{f(x_{n_k})\}}$. $\Rightarrow \Leftarrow$ Thus, f must indeed be continuous.

<u>Note</u>: This problem is much easier if you start from the fact, proved in 2017 Assignment 5 Problem 1, that a function is continuous if and only if the inverse image of every open set is open.

3. Suppose f and g are continuous on [a,b] and differentiable on (a,b). Prove that there is some $x \in (a,b)$ such that

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x).$$

<u>Hint</u>: Construct a function h(x) to which you can apply Rolle's Theorem.

Solution: Let

$$h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x).$$

Then h is continuous on [a, b] and differentiable on (a, b) since both f and g are. In addition,

$$h(a) = [f(b) - f(a)]g(a) - [g(b) - g(a)]f(a) = [f(b)]g(a) - [g(b)]f(a)$$

and

$$h(b) = [f(b) - f(a)]g(b) - [g(b) - g(a)]f(b) = [-f(a)]g(b) - [-g(a)]f(b)$$

= $f(b)[g(a)] - g(b)[f(a)]$,

so h(a) = h(b). Hence h satisfies the hypotheses of Rolle's theorem, which implies that there exists $x \in (a, b)$ such that h'(x) = 0. From the algebra of derivatives, it follows that

$$[f(b) - f(a)]g'(x) - [g(b) - g(a)]f'(x) = 0,$$

as required. \Box

- 4. Answer (and justify your answers) to the following questions, bearing in mind that lower and upper sums are defined by partitioning a closed interval [a, b] into closed subintervals, so adjacent subintervals have a point in common. (*Note*: The definitions of lower and upper sums, and the Partition Theorem, are your friends for this problem.)
 - (a) Which functions have the property that every lower sum equals every upper sum? **Solution:** Suppose a < b and $f : [a,b] \to \mathbb{R}$ satisfies L(f,P) = U(f,Q) for all partitions P and Q. Then this true, in particular, for $P = Q = \{a,b\}$. But $L(f,\{a,b\}) = m(b-a)$ where $m = \inf\{f(x) : x \in [a,b]\}$ and $U(f,\{a,b\}) = M(b-a)$ where $M = \sup\{f(x) : x \in [a,b]\}$. Therefore m = M, i.e., f is constant. \square
 - (b) Which functions have the property that some upper sum equals some lower sum? (Note: The upper and lower sums could be calculated for different partitions.) **Solution:** Let a < b and $f : [a, b] \to \mathbb{R}$. Suppose P_1 and P_2 are particular partitions of [a, b] with the property that $L(f, P_1) = U(f, P_2)$. Consider the partition $P = P_1 \cup P_2$. We know from the partition lemma and the partition theorem that

$$L(f, P_1) \le L(f, P) \le U(f, P) \le U(f, P_2).$$

But $L(f, P_1) = U(f, P_2)$ by hypothesis, so it follows that L(f, P) = U(f, P). Thus, we have established that if some upper sum equals some lower sum then, in fact, there exists a single partition P of [a, b] such that the upper and lower sums for P are equal. Write $P = \{t_0, t_1, \ldots, t_n\}$ as usual, and let m_i and M_i be the greatest lower and least upper bounds for f on the closed subintervals $[t_{i-1}, t_i]$, as usual. By definition, we always have $m_i \leq M_i$ for $i = 1, \ldots, n$, so

$$m_i(t_i - t_{i-1}) \le M_i(t_i - t_{i-1}), \qquad i = 1, \dots, n.$$
 (*)

Suppose $m_j < M_j$ for some j. Then summing the n inequalities (*) we get L(f,P) < U(f,P), which is a contradiction. Therefore, we must have $m_i = M_i$ for all i, i.e., f is constant on each subinterval $[t_{i-1},t_i]$. But adjacent subintervals have a point in common, so if f constant on all subintervals, the constant value must be the same on each subinterval, i.e., f is a constant function on the entire interval [a,b].

- (c) Which continuous functions have the property that all lower sums are equal? **Solution:** Since all lower sums are equal, they are equal to $L(f, \{a, b\}) = m(b-a)$, where $m = \inf\{f(x) : x \in [a, b]\}$. Suppose that f is not a constant function. Then, since m is a lower bound for f on [a, b], there exists $u \in [a, b]$ such that f(u) > m. Consequently, since f is continuous, the neighbourhood sign lemma (applied to the point u) implies that we can choose some partition $P = \{t_0, t_1, \ldots, t_n\}$ such that f(x) > m on a subinterval $[t_{i-1}, t_i]$. But then L(f, P) > m(b-a). $\Rightarrow \Leftarrow$ Hence f must be constant.
- (d) (<u>Bonus</u>) Which integrable functions have the property that all lower sums are equal?

<u>Hint</u>: First show that if f is integrable on [a, b] and all lower sums are equal then f(x) = m on a dense subset of [a, b] (where $m = \inf\{f(x) : x \in [a, b]\}$).

5. Suppose a < b and f is integrable on [a, b]. Prove that

$$\int_{a}^{b} f(x) \, dx = \int_{a+c}^{b+c} f(x-c) \, dx \, .$$

(The geometric interpretation should make this very plausible.) <u>Hint</u>: Every partition $P = \{t_0, \ldots, t_n\}$ gives rise to a partition $P' = \{t_0 + c, \ldots, t_n + c\}$ of [a + c, b + c], and conversely.

Solution: Let g(x) = f(x-c) for all $x \in [a+c,b+c]$. Given a partition $P = \{t_0,\ldots,t_n\}$ of [a,b], let $P' = \{t_0+c,\ldots,t_n+c\}$. Then P' is a partition of [a+c,b+c] and we have

$$L(f,P) = \sum_{i=1}^{n} m_{i}(t_{i} - t_{i-1}) \quad \text{where } m_{i} = \inf\{f(x) : x \in [t_{i-1}, t_{i}]\}$$

$$= \sum_{i=1}^{n} m_{i}(t_{i} - c + c - t_{i-1}) \quad \text{where } m_{i} = \inf\{f(x) : x \in [t_{i-1}, t_{i}]\}$$

$$= \sum_{i=1}^{n} m_{i}((t_{i} - c) - (t_{i-1} - c)) \quad \text{where } m_{i} = \inf\{f(x) : x \in [t_{i-1}, t_{i}]\}$$

$$= \sum_{i=1}^{n} m_{i}((t_{i} - c) - (t_{i-1} - c)) \quad \text{where } m_{i} = \inf\{f(x - c) : x \in [t_{i-1} + c, t_{i} + c]\}$$

$$= \sum_{i=1}^{n} m_{i}((t_{i} - c) - (t_{i-1} - c)) \quad \text{where } m_{i} = \inf\{g(x) : x \in [t_{i-1} + c, t_{i} + c]\}$$

$$= L(q, P').$$

Thus, every lower sum of f for a partition P on [a,b] corresponds to a lower sum of g for a partition P' on [a+c,b+c] and vice versa. Consequently,

 $\sup\{L(f,P): P \text{ a parition of } [a,b]\} = \sup\{L(g,P'): P' \text{ a parition of } [a+c,b+c]\}.$ Similarly,

 $\inf\{U(f,P): P \text{ a parition of } [a,b]\} = \inf\{U(g,P'): P' \text{ a parition of } [a+c,b+c]\}.$

If f is integrable on [a,b], then $\sup\{L(f,P)\}=\inf\{U(f,P)\}$, from which it follows immediately from above that $\sup\{L(g,P')\}=\inf\{U(g,P')\}$, *i.e.*, g is integrable on [a+c,b+c]. Moreover,

$$\int_{a}^{b} f(x) dx = \sup\{L(f, P)\} = \sup\{L(g, P')\} = \int_{a+c}^{b+c} g(x) dx = \int_{a+c}^{b+c} f(x-c) dx.$$