## Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

## 2019 ASSIGNMENT 4 (Solutions)

This assignment is due on Friday 8 March 2019 at 1:25pm.
PLEASE NOTE that you must submit online via crowdmark.
You will receive an e-mail from crowdmark with the required link. Do NOT submit a hardcopy of this assignment.

Note: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Give an example of a sequence of closed sets $F_{1}, F_{2}, F_{3}, \ldots$, whose union is neither open nor closed. Can this be achieved with a sequence that contains only finitely many distinct sets?
Solution: Let $F_{n}=\left[\frac{1}{n}, 1\right]$. Note that each $F_{n}$ is closed and consider the sequence of sets $\left\{F_{n}: n \in \mathbb{N}\right\}$. Then

$$
\bigcup_{n=1}^{\infty} F_{n}=(0,1]
$$

which is neither open nor closed.
It is not possible to achieve this with a sequence containing only finitely many distinct sets, since any finite union of closed sets is closed.
2. Suppose that $E \subseteq \mathbb{R}, K \subseteq \mathbb{R}, E$ is closed and $K$ is compact. Show that $E \cap K$ is compact, by proving directly that $E \cap K$ satisfies each of the following equivalent properties:
(a) closed and bounded;

Solution: Recall that a set is closed iff it contains all its accumulation points. Suppose $x$ is an accumulation point of $E \cap K$. Then, by definition, every deleted neighbourhood of $x$ contains a point of $E \cap K$. But since every point of $E \cap K$ is in both $E$ and $K$, it follows that every deleted neighbourhood of $x$ contains a point of $E$ and a point of $K$. Hence $x$ is an accumulation point of $E$ and of $K$, and since both $E$ and $K$ are closed, we must have $x \in E$ and $x \in K$, i.e., $x \in E \cap K$. Thus $E \cap K$ is closed.
Now, since $K$ is bounded, there exists $M>0$ such that $|x|<M$ for all $x \in K$. But if $y \in E \cap K$ then $y \in K$, so $|y|<M$, i.e., $E \cap K$ is bounded.
Thus, $E \cap K$ is both closed and bounded.
(b) Bolzano-Weierstrass property;

Solution: We must show that any sequence in $E \cap K$ contains a subsequence that converges to a point in $E \cap K$. Let $\left\{x_{n}\right\}$ be a sequence in $E \cap K$. Since $E \cap K \subseteq K,\left\{x_{n}\right\}$ is a sequence in $K$. But $K$ is compact so $\left\{x_{n}\right\}$ contains a
subsequence $\left\{x_{n_{m}}\right\}$ that converges to a point $x \in K$, i.e., $\exists x \in K$ such that, $\forall \varepsilon>0, \exists M \in \mathbb{N}$ ) $\forall m \geq M,\left|x-x_{n_{m}}\right|<\varepsilon$. In particular, taking $\varepsilon=\varepsilon_{\ell}=\frac{1}{\ell}$, for each $\ell \in \mathbb{N}$ we can find $x_{\ell} \in\left\{x_{n_{m}}\right\} \subseteq E \cap K \subseteq E$ such that $\left|x-x_{\ell}\right|<\frac{1}{\ell}$. Hence $x$ is an accumulation point of $E$. But $E$ is closed, so $x \in E$. Thus, the arbitrary sequence $\left\{x_{n}\right\} \subseteq E \cap K$ contains a subsequence that converges to a point $x \in E \cap K$.
(c) Heine-Borel property.

Solution: We must show that any open cover of $E \cap K$ contains a finite subcover of $E \cap K$. Let $\mathcal{U}$ be an open cover of $E \cap K . \mathcal{U}$ is not necessarily an open cover of $K$ unless $K \subseteq E$. However, since $E$ is closed, it follows that $E^{c}$ is open, and $E^{c}$ certainly covers all points of $K$ that are not also points of $E$. Therefore, $\mathcal{V}=\mathcal{U} \cup E^{\mathrm{c}}$ is an open cover of $K$. But $K$ is compact, so $\mathcal{V}$ contains a finite subcover of $K$, say $\mathcal{W}=\left\{U_{1}, \ldots, U_{n}\right\}$. It follows that $\mathcal{W}$ also covers $E \cap K \subseteq K$. Moreover, if $E^{\mathrm{c}} \in \mathcal{W}$, it can be discarded for the purpose of covering $E \cap K$, since $(E \cap K) \cap E^{\mathrm{c}}=\varnothing$. We therefore have a finite subcollection of the original open cover $\mathcal{U}$ that covers $E \cap K$.
3. For which of the following functions $f$ is there a continuous function $g$ with domain $\mathbb{R}$ such that $g(x)=f(x)$ for all $x$ in the domain of $f$ ?
(i) $f(x)=\frac{x^{2}-4}{x-2}$,

Solution: $\operatorname{dom} f=\mathbb{R} \backslash\{2\}$. Noting that for all $x \in \operatorname{dom} f$, we have

$$
\frac{x^{2}-4}{x-2}=\frac{(x-2)(x+2)}{x-2}=x+2
$$

we see that $g(x)=x+2$ agrees with $f$ at every $x \in \operatorname{dom} f$, but $g$ is continuous at all $x \in \mathbb{R}$.
(ii) $f(x)=\frac{|x|}{x}$,

Solution: $\operatorname{dom} f=\mathbb{R} \backslash\{0\}$. Note that for all $x \neq 0$ we have

$$
f(x)= \begin{cases}1 & x>0 \\ -1 & x<0\end{cases}
$$

from which it follows that

$$
\lim _{x \rightarrow 0^{-}} f(x)=-1 \neq 1=\lim _{x \rightarrow 0^{+}} f(x)
$$

Consequently, no function $g$ that agrees with $f$ on its domain can be continuous at 0 .
(iii) $f(x)=0, x$ irrational.

Solution: Let $g(x)=0$ for all $x \in \mathbb{R}$. Then $g(x)=f(x)$ for all $x \in \operatorname{dom} f=\mathbb{R} \backslash \mathbb{Q}$, and $g$ is continous on $\mathbb{R}$.
4. Prove that if $f$ is continuous at $a$, then for any $\varepsilon>0$ there is a $\delta>0$ such that whenever $|x-a|<\delta$ and $|y-a|<\delta$, we have $|f(x)-f(y)|<\varepsilon$.
Solution: Since $f$ is continuous at $a$, given $\varepsilon>0$ we can find $\delta>0$ such that $|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\frac{\varepsilon}{2}$. If both $|x-a|<\delta$ and $|y-a|<\delta$ then $|f(x)-f(a)|<\frac{\varepsilon}{2}$ and $|f(y)-f(a)|<\frac{\varepsilon}{2}$, and hence

$$
\begin{aligned}
|f(x)-f(y)| & =|f(x)-f(a)+f(a)-f(y)| \\
& =|f(x)-f(a)-(f(y)-f(a))| \\
& \leq|f(x)-f(a)|+|f(y)-f(a)| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

as required.
5. Suppose $a, b \in \mathbb{R}$ and $a<b$. Prove directly from the definition that $f(x)=x^{2}$ is uniformly continuous on the closed interval $[a, b]$. Is $f$ uniformly continuous on the open interval $(a, b)$ ?
Solution: We must show that given any $\varepsilon>0$, we can find $\delta>0$ such that if $x, y \in[a, b]$ and $|x-y|<\delta$ then $\left|x^{2}-y^{2}\right|<\varepsilon$.
Note first that $\left|x^{2}-y^{2}\right|=|x-y||x+y|$. We can make $|x-y|$ as small as we like by choosing $\delta$ sufficiently small. The challenge is to bound $|x+y|$. But note that for any $x, y \in[a, b]$ we have

$$
|x+y| \leq|x|+|y| \leq 2 \max (|a|,|b|) .
$$

Therefore, let $M=2 \max (|a|,|b|)$ and note that $M>0$ (since $a<b$, so it is impossible that both $a$ and $b$ vanish).
Now, given $\varepsilon>0$, let $\delta=\varepsilon / M$. Then, if $|x-y|<\delta$, and $a \leq x, y \leq b$, we have

$$
\left|x^{2}-y^{2}\right|=|x-y||x+y|<\frac{\varepsilon}{M} \cdot M=\varepsilon,
$$

as required.
Finally, a function that is uniformly continuous on a given domain is certainly uniformly continuous on any subset of the domain. Consequently, given that $x^{2}$ is uniformly continuous on $[a, b]$, it follows immediately that it is uniformly continuous on $(a, b)$. However, a uniformly continuous function on an open interval $(a, b)$ need not even be continuous on $[a, b]$.

