
Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 4 (Solutions)

This assignment is due on Friday 8 March 2019 at 1:25pm.
PLEASE NOTE that you must submit online via crowdmark.
You will receive an e-mail from crowdmark with the required link.

Do NOT submit a hardcopy of this assignment.

Note: Not all questions will be marked. The questions to be
marked will be determined after the assignment is due.

1. Give an example of a sequence of closed sets F1, F2, F3, . . . , whose union is neither
open nor closed. Can this be achieved with a sequence that contains only finitely many
distinct sets?

Solution: Let Fn = [ 1
n
, 1]. Note that each Fn is closed and consider the sequence of

sets {Fn : n ∈ N}. Then
∞⋃
n=1

Fn = (0, 1] ,

which is neither open nor closed.

It is not possible to achieve this with a sequence containing only finitely many distinct
sets, since any finite union of closed sets is closed.

2. Suppose that E ⊆ R, K ⊆ R, E is closed and K is compact. Show that E ∩ K
is compact, by proving directly that E ∩ K satisfies each of the following equivalent
properties:

(a) closed and bounded;

Solution: Recall that a set is closed iff it contains all its accumulation points.
Suppose x is an accumulation point of E ∩K. Then, by definition, every deleted
neighbourhood of x contains a point of E ∩K. But since every point of E ∩K
is in both E and K, it follows that every deleted neighbourhood of x contains
a point of E and a point of K. Hence x is an accumulation point of E and of
K, and since both E and K are closed, we must have x ∈ E and x ∈ K, i.e.,
x ∈ E ∩K. Thus E ∩K is closed.

Now, since K is bounded, there exists M > 0 such that |x| < M for all x ∈ K.
But if y ∈ E ∩K then y ∈ K, so |y| < M , i.e., E ∩K is bounded.

Thus, E ∩K is both closed and bounded.

(b) Bolzano-Weierstrass property;

Solution: We must show that any sequence in E ∩ K contains a subsequence
that converges to a point in E ∩ K. Let {xn} be a sequence in E ∩ K. Since
E ∩ K ⊆ K, {xn} is a sequence in K. But K is compact so {xn} contains a

Page 1 of 3

http://www.math.mcmaster.ca/earn/3A03
https://crowdmark.com/
https://crowdmark.com/


subsequence {xnm} that converges to a point x ∈ K, i.e., ∃x ∈ K such that,
∀ε > 0, ∃M ∈ N )– ∀m ≥ M , |x− xnm| < ε. In particular, taking ε = ε` = 1

`
,

for each ` ∈ N we can find x` ∈ {xnm} ⊆ E ∩ K ⊆ E such that |x− x`| < 1
`
.

Hence x is an accumulation point of E. But E is closed, so x ∈ E. Thus, the
arbitrary sequence {xn} ⊆ E ∩ K contains a subsequence that converges to a
point x ∈ E ∩K.

(c) Heine-Borel property.

Solution: We must show that any open cover of E∩K contains a finite subcover
of E ∩K. Let U be an open cover of E ∩K. U is not necessarily an open cover
of K unless K ⊆ E. However, since E is closed, it follows that Ec is open, and
Ec certainly covers all points of K that are not also points of E. Therefore,
V = U ∪ Ec is an open cover of K. But K is compact, so V contains a finite
subcover of K, say W = {U1, . . . , Un}. It follows that W also covers E ∩K ⊆ K.
Moreover, if Ec ∈ W , it can be discarded for the purpose of covering E∩K, since
(E ∩K) ∩ Ec = ∅. We therefore have a finite subcollection of the original open
cover U that covers E ∩K.

3. For which of the following functions f is there a continuous function g with domain R
such that g(x) = f(x) for all x in the domain of f?

(i) f(x) =
x2 − 4

x− 2
,

Solution: domf = R \ {2}. Noting that for all x ∈ domf , we have

x2 − 4

x− 2
=

(x− 2)(x+ 2)

x− 2
= x+ 2 ,

we see that g(x) = x + 2 agrees with f at every x ∈ domf , but g is continuous
at all x ∈ R.

(ii) f(x) =
|x|
x

,

Solution: domf = R \ {0}. Note that for all x 6= 0 we have

f(x) =

{
1 x > 0,

−1 x < 0,

from which it follows that

lim
x→0−

f(x) = −1 6= 1 = lim
x→0+

f(x) .

Consequently, no function g that agrees with f on its domain can be continuous
at 0.

(iii) f(x) = 0, x irrational.

Solution: Let g(x) = 0 for all x ∈ R. Then g(x) = f(x) for all x ∈ domf = R\Q,
and g is continous on R. .
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4. Prove that if f is continuous at a, then for any ε > 0 there is a δ > 0 such that
whenever |x− a| < δ and |y − a| < δ, we have |f(x)− f(y)| < ε.

Solution: Since f is continuous at a, given ε > 0 we can find δ > 0 such that
|x− a| < δ =⇒ |f(x)− f(a)| < ε

2
. If both |x− a| < δ and |y − a| < δ then

|f(x)− f(a)| < ε
2

and |f(y)− f(a)| < ε
2
, and hence

|f(x)− f(y)| = |f(x)− f(a) + f(a)− f(y)|
=
∣∣f(x)− f(a)−

(
f(y)− f(a)

)∣∣
≤ |f(x)− f(a)|+ |f(y)− f(a)|

<
ε

2
+
ε

2
= ε ,

as required.

5. Suppose a, b ∈ R and a < b. Prove directly from the definition that f(x) = x2 is
uniformly continuous on the closed interval [a, b]. Is f uniformly continuous on the
open interval (a, b)?

Solution: We must show that given any ε > 0, we can find δ > 0 such that if
x, y ∈ [a, b] and |x− y| < δ then |x2 − y2| < ε.

Note first that |x2 − y2| = |x− y| |x+ y|. We can make |x− y| as small as we like by
choosing δ sufficiently small. The challenge is to bound |x+ y|. But note that for any
x, y ∈ [a, b] we have

|x+ y| ≤ |x|+ |y| ≤ 2 max
(
|a| , |b|

)
.

Therefore, let M = 2 max(|a| , |b|) and note that M > 0 (since a < b, so it is impossible
that both a and b vanish).

Now, given ε > 0, let δ = ε/M . Then, if |x− y| < δ, and a ≤ x, y ≤ b, we have∣∣x2 − y2∣∣ = |x− y| |x+ y| < ε

M
·M = ε ,

as required.

Finally, a function that is uniformly continuous on a given domain is certainly uniformly
continuous on any subset of the domain. Consequently, given that x2 is uniformly
continuous on [a, b], it follows immediately that it is uniformly continuous on (a, b).
However, a uniformly continuous function on an open interval (a, b) need not even be
continuous on [a, b].
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