Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03 2019 ASSIGNMENT 4 (Solutions)

This assignment is **due** on **Friday 8 March 2019 at 1:25pm**. **PLEASE NOTE** that you must **submit online** via crowdmark. You will receive an e-mail from crowdmark with the required link. Do <u>NOT</u> submit a hardcopy of this assignment.

<u>Note</u>: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Give an example of a sequence of closed sets F_1, F_2, F_3, \ldots , whose union is neither open nor closed. Can this be achieved with a sequence that contains only finitely many distinct sets?

Solution: Let $F_n = [\frac{1}{n}, 1]$. Note that each F_n is closed and consider the sequence of sets $\{F_n : n \in \mathbb{N}\}$. Then

$$\bigcup_{n=1}^{\infty} F_n = (0,1],$$

which is neither open nor closed.

It is <u>not</u> possible to achieve this with a sequence containing only finitely many distinct sets, since any finite union of closed sets is closed. \Box

- 2. Suppose that $E \subseteq \mathbb{R}$, $K \subseteq \mathbb{R}$, E is closed and K is compact. Show that $E \cap K$ is compact, by proving <u>directly</u> that $E \cap K$ satisfies each of the following equivalent properties:
 - (a) closed and bounded;

Solution: Recall that a set is closed iff it contains all its accumulation points. Suppose x is an accumulation point of $E \cap K$. Then, by definition, every deleted neighbourhood of x contains a point of $E \cap K$. But since every point of $E \cap K$ is in both E and K, it follows that every deleted neighbourhood of x contains a point of E and a point of K. Hence x is an accumulation point of E and of K, and since both E and K are closed, we must have $x \in E$ and $x \in K$, *i.e.*, $x \in E \cap K$. Thus $E \cap K$ is closed.

Now, since K is bounded, there exists M > 0 such that |x| < M for all $x \in K$. But if $y \in E \cap K$ then $y \in K$, so |y| < M, *i.e.*, $E \cap K$ is bounded.

Thus, $E \cap K$ is both closed and bounded.

(b) Bolzano-Weierstrass property;

Solution: We must show that any sequence in $E \cap K$ contains a subsequence that converges to a point in $E \cap K$. Let $\{x_n\}$ be a sequence in $E \cap K$. Since $E \cap K \subseteq K$, $\{x_n\}$ is a sequence in K. But K is compact so $\{x_n\}$ contains a

subsequence $\{x_{n_m}\}$ that converges to a point $x \in K$, *i.e.*, $\exists x \in K$ such that, $\forall \varepsilon > 0, \exists M \in \mathbb{N} \ \forall m \ge M, |x - x_{n_m}| < \varepsilon$. In particular, taking $\varepsilon = \varepsilon_{\ell} = \frac{1}{\ell}$, for each $\ell \in \mathbb{N}$ we can find $x_{\ell} \in \{x_{n_m}\} \subseteq E \cap K \subseteq E$ such that $|x - x_{\ell}| < \frac{1}{\ell}$. Hence x is an accumulation point of E. But E is closed, so $x \in E$. Thus, the arbitrary sequence $\{x_n\} \subseteq E \cap K$ contains a subsequence that converges to a point $x \in E \cap K$.

(c) Heine-Borel property.

Solution: We must show that any open cover of $E \cap K$ contains a finite subcover of $E \cap K$. Let \mathcal{U} be an open cover of $E \cap K$. \mathcal{U} is not necessarily an open cover of K unless $K \subseteq E$. However, since E is closed, it follows that E^c is open, and E^c certainly covers all points of K that are not also points of E. Therefore, $\mathcal{V} = \mathcal{U} \cup E^c$ is an open cover of K. But K is compact, so \mathcal{V} contains a finite subcover of K, say $\mathcal{W} = \{U_1, \ldots, U_n\}$. It follows that \mathcal{W} also covers $E \cap K \subseteq K$. Moreover, if $E^c \in \mathcal{W}$, it can be discarded for the purpose of covering $E \cap K$, since $(E \cap K) \cap E^c = \emptyset$. We therefore have a finite subcollection of the original open cover \mathcal{U} that covers $E \cap K$.

- 3. For which of the following functions f is there a continuous function g with domain \mathbb{R} such that g(x) = f(x) for all x in the domain of f?
 - (i) $f(x) = \frac{x^2 4}{x 2}$, Solution: dom $f = \mathbb{R} \setminus \{2\}$. Noting that for all $x \in \text{dom} f$, we have

$$\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2,$$

we see that g(x) = x + 2 agrees with f at every $x \in \text{dom} f$, but g is continuous at all $x \in \mathbb{R}$.

(ii) $f(x) = \frac{|x|}{x}$, Solution: dom $f = \mathbb{R} \setminus \{0\}$. Note that for all $x \neq 0$ we have

$$f(x) = \begin{cases} 1 & x > 0, \\ -1 & x < 0, \end{cases}$$

from which it follows that

$$\lim_{x \to 0^{-}} f(x) = -1 \neq 1 = \lim_{x \to 0^{+}} f(x) \,.$$

Consequently, no function g that agrees with f on its domain can be continuous at 0.

(iii) f(x) = 0, x irrational.

Solution: Let g(x) = 0 for all $x \in \mathbb{R}$. Then g(x) = f(x) for all $x \in \text{dom} f = \mathbb{R} \setminus \mathbb{Q}$, and g is continuous on \mathbb{R} .

4. Prove that if f is continuous at a, then for any $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $|x - a| < \delta$ and $|y - a| < \delta$, we have $|f(x) - f(y)| < \varepsilon$.

Solution: Since f is continuous at a, given $\varepsilon > 0$ we can find $\delta > 0$ such that $|x-a| < \delta \implies |f(x) - f(a)| < \frac{\varepsilon}{2}$. If both $|x-a| < \delta$ and $|y-a| < \delta$ then $|f(x) - f(a)| < \frac{\varepsilon}{2}$ and $|f(y) - f(a)| < \frac{\varepsilon}{2}$, and hence

$$\begin{aligned} |f(x) - f(y)| &= |f(x) - f(a) + f(a) - f(y)| \\ &= \left| f(x) - f(a) - \left(f(y) - f(a) \right) \right| \\ &\leq |f(x) - f(a)| + |f(y) - f(a)| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \,, \end{aligned}$$

as required.

5. Suppose $a, b \in \mathbb{R}$ and a < b. Prove directly from the definition that $f(x) = x^2$ is uniformly continuous on the closed interval [a, b]. Is f uniformly continuous on the open interval (a, b)?

Solution: We must show that given any $\varepsilon > 0$, we can find $\delta > 0$ such that if $x, y \in [a, b]$ and $|x - y| < \delta$ then $|x^2 - y^2| < \varepsilon$.

Note first that $|x^2 - y^2| = |x - y| |x + y|$. We can make |x - y| as small as we like by choosing δ sufficiently small. The challenge is to bound |x + y|. But note that for any $x, y \in [a, b]$ we have

 $|x+y| \le |x|+|y| \le 2 \max(|a|,|b|).$

Therefore, let $M = 2 \max(|a|, |b|)$ and note that M > 0 (since a < b, so it is impossible that both a and b vanish).

Now, given $\varepsilon > 0$, let $\delta = \varepsilon/M$. Then, if $|x - y| < \delta$, and $a \le x, y \le b$, we have

$$|x^2 - y^2| = |x - y| |x + y| < \frac{\varepsilon}{M} \cdot M = \varepsilon,$$

as required.

Finally, a function that is uniformly continuous on a given domain is certainly uniformly continuous on any subset of the domain. Consequently, given that x^2 is uniformly continuous on [a, b], it follows immediately that it is uniformly continuous on (a, b). However, a uniformly continuous function on an open interval (a, b) need not even be continuous on [a, b].

Version of March 1, 2019 @ 21:10