Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 4

This assignment is due on Friday 8 March 2019 at 1:25pm.
PLEASE NOTE that you must submit online via crowdmark.
You will receive an e-mail from crowdmark with the required link.
Do NOT submit a hardcopy of this assignment.
Note: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Give an example of a sequence of closed sets $F_{1}, F_{2}, F_{3}, \ldots$, whose union is neither open nor closed. Can this be achieved with a sequence that contains only finitely many distinct sets?
2. Suppose that $E \subseteq \mathbb{R}, K \subseteq \mathbb{R}, E$ is closed and K is compact. Show that $E \cap K$ is compact, by proving directly that $E \cap K$ satisfies each of the following equivalent properties:
(a) closed and bounded;
(b) Bolzano-Weierstrass property;
(c) Heine-Borel property.
3. For which of the following functions f is there a continuous function g with domain \mathbb{R} such that $g(x)=f(x)$ for all x in the domain of f ?
(i) $f(x)=\frac{x^{2}-4}{x-2}$,
(ii) $f(x)=\frac{|x|}{x}$,
(iii) $f(x)=0, x$ irrational.
4. Prove that if f is continuous at a, then for any $\varepsilon>0$ there is a $\delta>0$ such that whenever $|x-a|<\delta$ and $|y-a|<\delta$, we have $|f(x)-f(y)|<\varepsilon$.
5. Suppose $a, b \in \mathbb{R}$ and $a<b$. Prove directly from the definition that $f(x)=x^{2}$ is uniformly continuous on the closed interval $[a, b]$. Is f uniformly continuous on the open interval (a, b) ?
