Mathematics 3A03 Real Analysis I
 http://www.math.mcmaster.ca/earn/3A03
 2019 ASSIGNMENT 3 (Solutions)

This assignment was due on Friday 15 Feb 2019 at 1:25pm via crowdmark.
Note: Not all questions will be marked. The questions to be marked will be determined after the assignment is due.

1. Let $\left\{x_{n}\right\}$ be a bounded sequence and let $x=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$. Suppose that, moreover, $x_{n}<x$ for all n. Prove that there is a subsequence of $\left\{x_{n}\right\}$ that converges to x.
Solution: We need to show that we can pick a subsequence of $\left\{x_{n_{j}}\right\} \subseteq\left\{x_{n}\right\}$, such that $x_{n_{j}} \rightarrow x$ as $j \rightarrow \infty$, i.e., we must demonstrate the existence of a subsequence $\left\{x_{n_{j}}\right\}$ with the property that $\forall \varepsilon>0 \exists J \in \mathbb{N}$ such that $\forall j \geq J, x-x_{n_{j}}<\varepsilon$.
Since x is the least upper bound of $\left\{x_{n}\right\}$, given any $\epsilon>0$ there exists $n \in \mathbb{N}$ such that $0<x-x_{n}<\varepsilon$. Intuitively, we can construct the required subsequence by finding, for each $j \in \mathbb{N}$, an element of the original sequence that is within a distance $1 / j$ from the least upper bound x.However, we need to make sure that we don't pick the same x_{n} multiple times (for example we can't have $n_{1}=n_{2}$, because we would then be choosing the same sequence element twice). We can ensure we get a subsequence via the following inductive construction.
Let $n_{1}=1$, so the first element of $\left\{x_{n_{j}}\right\}$ is x_{1} (the first element of the original sequence $\left.\left\{x_{n}\right\}\right)$. Then, given $n_{1}, n_{2}, \ldots, n_{j-1}$, choose n_{j} such that $x-x_{n_{j}}<x-x_{n_{j-1}}$ (to ensure we're picking a new sequence element) and $x-x_{n_{j}}<\frac{1}{j}$ (to ensure $x_{n_{j}} \rightarrow x$). Put another way, we choose n_{j}, such that

$$
x-x_{n_{j}}<\varepsilon_{j} \stackrel{\text { def }}{=} \min \left\{x-x_{n_{j-1}}, \quad \frac{1}{j}\right\} .
$$

Then, given any $\varepsilon>0$, if we choose $J>1 / \varepsilon$ then we can be sure that $x-x_{n_{j}}<\varepsilon$ for any $j \geq J$ as required.
2. Show directly that the sequence $s_{n}=\frac{1}{n}$ is a Cauchy sequence.

Solution: We need to show that given any $\varepsilon>0, \exists N \in \mathbb{N}$ such that $\forall m, n \geq N$,

$$
\left|\frac{1}{m}-\frac{1}{n}\right|<\varepsilon .
$$

Note from the triangle inequality that $\forall m, n \in \mathbb{N}$,

$$
\begin{equation*}
\left|\frac{1}{m}-\frac{1}{n}\right| \leq \frac{1}{m}+\frac{1}{n} \leq 2 \max \left\{\frac{1}{m}, \frac{1}{n}\right\}=\frac{2}{\min (m, n)} \tag{*}
\end{equation*}
$$

Therefore, given $\varepsilon>0$, choose $N \in \mathbb{N}$ such that $2 / N<\varepsilon$, i.e., choose $N \in \mathbb{N}$ such that $N>2 / \varepsilon$. Then for any $m, n \geq N, \min (m, n) \geq N$, so $2 / \min (m, n) \leq 2 / N<\varepsilon$, and hence from $\left(^{*}\right)$ we have $|(1 / m)-(1 / n)|<\varepsilon$ as required.
3. Show directly that if $\left\{s_{n}\right\}$ is a Cauchy sequence then so too is $\left\{\left|s_{n}\right|\right\}$. From this conclude that $\left\{\left|s_{n}\right|\right\}$ converges whenever $\left\{s_{n}\right\}$ converges.
Solution: Suppose $\left\{s_{n}\right\}$ is Cauchy, i.e., $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\forall m, n \geq N$, $\left|s_{n}-s_{m}\right|<\varepsilon$. Note first from the triangle inequality that for any $x, y \in \mathbb{R}$, we have

$$
|x|-|y| \leq|x-y|
$$

and similarly,

$$
|y|-|x| \leq|y-x|=|x-y|
$$

and hence

$$
\| x|-|y|| \leq|x-y|
$$

Therefore, given $\varepsilon>0$ find $N \in \mathbb{N}$ such that $\forall m, n \geq N,\left|s_{n}-s_{m}\right|<\varepsilon$ (which is possible because $\left\{s_{n}\right\}$ is Cauchy). Then

$$
\left|\left|s_{n}\right|-\left|s_{m}\right|\right| \leq\left|s_{n}-s_{m}\right|<\varepsilon
$$

i.e., $\left\{\left|s_{n}\right|\right\}$ is Cauchy.
4. Define a sequence $\left\{a_{n}\right\}$ recursively by setting $a_{1}=1$ and $a_{n}=\sqrt{1+a_{n-1}}$. Prove that $\left\{a_{n}\right\}$ converges and find its limit. Hint: First show by induction that a_{n} is bounded.
Solution: Let's begin by showing, specifically, that $1 \leq a_{n}<2$ for all $n \in \mathbb{N}$. We know $a_{1}=1$ and $1 \leq 1<2$, so the base case of our induction is true. Now suppose $1 \leq a_{n}<2$. We know $a_{n+1}=\sqrt{1+a_{n}}$, so $a_{n+1}>1$ and

$$
a_{n+1}^{2}=1+a_{n} \leq 1+2<4,
$$

from which we have $1<a_{n+1}<2$. Hence, by the principle of mathematical induction, $\left\{a_{n}\right\}$ is bounded (specifically, $1 \leq a_{n}<2$ for all $n \in \mathbb{N}$).
If we can now show that $\left\{a_{n}\right\}$ is monotonic, then the monotone convergence theorem will guarantee that it converges. To that end, let's try to show that $a_{n+1} \geq a_{n}$ for all n. Observe that

$$
\begin{aligned}
a_{n+1} \geq a_{n} & \Longleftrightarrow \sqrt{1+a_{n}} \geq a_{n} \\
& \Longleftrightarrow 1+a_{n} \geq a_{n}^{2} \quad\left(\because a_{n} \geq 1\right) \\
& \Longleftrightarrow a_{n}^{2}-a_{n}-1 \leq 0 \\
& \Longleftrightarrow\left(a_{n}-\frac{1+\sqrt{5}}{2}\right)\left(a_{n}-\frac{1-\sqrt{5}}{2}\right) \leq 0 \\
& \Longleftrightarrow a_{n} \leq \frac{1+\sqrt{5}}{2} \quad \text { and } \quad a_{n} \geq \frac{1-\sqrt{5}}{2} \\
& \Longleftrightarrow 1 \leq a_{n}<2 .
\end{aligned}
$$

Hence our bounds actually imply the sequence is monotonic, and hence it converges by the monotone convergence theorem.

Finally, since the sequence converges, if we denote its limit by a then we must have $a=\sqrt{1+a}$, i.e., $a^{2}-a-1=0$. Since $a>1$, we have

$$
a=\frac{1+\sqrt{5}}{2} .
$$

This is the golden ratio, which turns up in many places.
5. Suppose $A \subset B \subset \mathbb{R}$. Prove that if B is countable then A is countable.

Solution: If $A=\varnothing$ then A is countable, so assume $A \neq \varnothing$. We will prove that A is the range of a sequence. Since B is countable, it is the range of a sequence $\{f(n)\}$, i.e., $f: \mathbb{N} \rightarrow B$ is surjective (onto B). Define a sequence $g(n)$ recursively as follows. Since $\varnothing \neq A \subset B$, the well-ordering of the natural numbers implies that there is a least natural number i such that $f(i) \in A$. Let $g(1)=g(2)=\cdots=g(i)=f(i)$ and for all $n>i$ let

$$
g(n)= \begin{cases}f(n) & \text { if } f(n) \in A \\ g(n-1) & \text { if } f(n) \notin A\end{cases}
$$

Then $\{g(n)\} \subset A$. Moreoever, since $A \subset B$ and f is onto B, every element of A occurs in the sequence $\{f(n)\}$. Hence $g(\mathbb{N})=\{g(n)\}=A$.
6. Suppose $A \subset \mathbb{R}$ and $B=\left\{b: b=a\right.$ or $b=a^{2}$ for some $\left.a \in A\right\}$. Prove that if A is countable then B is countable.
Solution: If $A=\varnothing$ then $B=\varnothing$, which is countable, so assume $A \neq \varnothing$. Since A is countable, there is a sequence whose range is A, i.e., $\exists f: \mathbb{N} \rightarrow A$ such that $f(\mathbb{N})=A$. Define a function $g: \mathbb{N} \rightarrow B$ via

$$
g(n)= \begin{cases}f((n+1) / 2) & \text { if } n \text { is odd } \\ {[f(n / 2)]^{2}} & \text { if } n \text { is even. }\end{cases}
$$

Then the range of the sequence $\{g(n)\}$ is B, so B is countable.
7. Show (a) that no interior point of a set can be a boundary point, (b) that it is possible for an accumulation point to be a boundary point, and (c) that every isolated point must be a boundary point.
Solution: Consider a set $E \subseteq \mathbb{R}$.
(a) For any $x \in E^{\circ}$, there exists $c>0$ such that $(x-c, x+c) \subseteq E$. But $(x-c, x+c)$ is therefore a neighbourhood of x that contains no points of $\mathbb{R} \backslash E$, i.e., x is not a boundary point of E.
(b) Suppose $E=(0,1]$. The point $0 \notin E$, but 0 is an accumulation point of E since any neighbourhood of 0 contains points of E.
(c) Suppose x is an isolated point of a set $E \subset \mathbb{R}$. Then there is a neighbourhood $(x-c, x+c)$ of x for which x is the only element of E. Any other neighbourhood $(x-d, x+d)$ of x contains x, and regardless of whether d is less than or greater than c, there are points of $(x-c, x+c) \backslash\{x\}$ in $(x-d, x+d)$, so x is a boundary point of E.
8. Express the closed interval $[0,1]$ as an intersection of a sequence of open sets. Can it also be expressed as a union of a sequence of open sets?
Solution: For the first part, note that

$$
[0,1]=\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, 1+\frac{1}{n}\right) .
$$

For the second part, note that any union of open sets is open, yet $[0,1]$ is not open so it cannot be expressed as union of open sets. (Note that it is important to state that $[0,1]$ is "not open". The fact that $[0,1]$ is closed does not imply on its own that $[0,1]$ is not open; recall that \mathbb{R} is both open and closed.)

To prove that the union of a sequence of open sets is open, let

$$
\mathcal{U}=\bigcup_{n=1}^{\infty} U_{n}
$$

be a union of a sequence of open sets $\left\{U_{n}\right\}$. If $x \in \mathcal{U}$ then there must be an open set U_{i} such that $x \in U_{i}$. But $U_{i} \subseteq \mathcal{U}$, which implies x is an interior point of \mathcal{U}, i.e., \mathcal{U} is open.

To prove more generally (and slightly more abstractly) that any union of open sets is open, suppose \mathcal{U} is a union of open sets. If $x \in \mathcal{U}$ then there must be an open set $U \subseteq \mathcal{U}$ such that $x \in U$, which implies x is an interior point of \mathcal{U}, i.e., \mathcal{U} is open.

