
Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 3 (Solutions)

This assignment was due on Friday 15 Feb 2019 at 1:25pm via crowdmark.

Note: Not all questions will be marked. The questions to be
marked will be determined after the assignment is due.

1. Let {xn} be a bounded sequence and let x = sup{xn : n ∈ N}. Suppose that, moreover,
xn < x for all n. Prove that there is a subsequence of {xn} that converges to x.

Solution: We need to show that we can pick a subsequence of {xnj
} ⊆ {xn}, such

that xnj
→ x as j → ∞, i.e., we must demonstrate the existence of a subsequence

{xnj
} with the property that ∀ε > 0 ∃J ∈ N such that ∀j ≥ J , x− xnj

< ε.

Since x is the least upper bound of {xn}, given any ε > 0 there exists n ∈ N such that
0 < x − xn < ε. Intuitively, we can construct the required subsequence by finding,
for each j ∈ N, an element of the original sequence that is within a distance 1/j from
the least upper bound x. However, we need to make sure that we don’t pick the same
xn multiple times (for example we can’t have n1 = n2, because we would then be
choosing the same sequence element twice). We can ensure we get a subsequence via
the following inductive construction.

Let n1 = 1, so the first element of {xnj
} is x1 (the first element of the original sequence

{xn}). Then, given n1, n2, . . . , nj−1, choose nj such that x−xnj
< x−xnj−1

(to ensure
we’re picking a new sequence element) and x − xnj

< 1
j

(to ensure xnj
→ x). Put

another way, we choose nj, such that

x− xnj
< εj

def
= min

{
x− xnj−1

,
1

j

}
.

Then, given any ε > 0, if we choose J > 1/ε then we can be sure that x− xnj
< ε for

any j ≥ J as required.

2. Show directly that the sequence sn = 1
n

is a Cauchy sequence.

Solution: We need to show that given any ε > 0, ∃N ∈ N such that ∀m,n ≥ N ,∣∣∣∣ 1

m
− 1

n

∣∣∣∣ < ε .

Note from the triangle inequality that ∀m,n ∈ N,∣∣∣∣ 1

m
− 1

n

∣∣∣∣ ≤ 1

m
+

1

n
≤ 2 max

{
1

m
,

1

n

}
=

2

min(m,n)
. (∗)

Therefore, given ε > 0, choose N ∈ N such that 2/N < ε, i.e., choose N ∈ N such
that N > 2/ε. Then for any m,n ≥ N , min(m,n) ≥ N , so 2/min(m,n) ≤ 2/N < ε,
and hence from (*) we have |(1/m)− (1/n)| < ε as required.
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3. Show directly that if {sn} is a Cauchy sequence then so too is {|sn|}. From this
conclude that {|sn|} converges whenever {sn} converges.

Solution: Suppose {sn} is Cauchy, i.e., ∀ε > 0, ∃N ∈ N such that ∀m,n ≥ N ,
|sn − sm| < ε. Note first from the triangle inequality that for any x, y ∈ R, we have

|x| − |y| ≤ |x− y| ,

and similarly,
|y| − |x| ≤ |y − x| = |x− y| ,

and hence
||x| − |y|| ≤ |x− y| .

Therefore, given ε > 0 find N ∈ N such that ∀m,n ≥ N , |sn − sm| < ε (which is
possible because {sn} is Cauchy). Then

||sn| − |sm|| ≤ |sn − sm| < ε ,

i.e., {|sn|} is Cauchy.

4. Define a sequence {an} recursively by setting a1 = 1 and an =
√

1 + an−1. Prove that
{an} converges and find its limit. Hint: First show by induction that an is bounded.

Solution: Let’s begin by showing, specifically, that 1 ≤ an < 2 for all n ∈ N. We
know a1 = 1 and 1 ≤ 1 < 2, so the base case of our induction is true. Now suppose
1 ≤ an < 2. We know an+1 =

√
1 + an, so an+1 > 1 and

a2n+1 = 1 + an ≤ 1 + 2 < 4 ,

from which we have 1 < an+1 < 2. Hence, by the principle of mathematical induction,
{an} is bounded (specifically, 1 ≤ an < 2 for all n ∈ N).

If we can now show that {an} is monotonic, then the monotone convergence theorem
will guarantee that it converges. To that end, let’s try to show that an+1 ≥ an for all
n. Observe that

an+1 ≥ an ⇐⇒
√

1 + an ≥ an

⇐⇒ 1 + an ≥ a2n (∵ an ≥ 1)

⇐⇒ a2n − an − 1 ≤ 0

⇐⇒
(
an −

1 +
√

5

2

)(
an −

1−
√

5

2

)
≤ 0

⇐= an ≤
1 +
√

5

2
and an ≥

1−
√

5

2
⇐= 1 ≤ an < 2 .

Hence our bounds actually imply the sequence is monotonic, and hence it converges
by the monotone convergence theorem.
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Finally, since the sequence converges, if we denote its limit by a then we must have
a =
√

1 + a, i.e., a2 − a− 1 = 0. Since a > 1, we have

a =
1 +
√

5

2
.

This is the golden ratio, which turns up in many places.

5. Suppose A ⊂ B ⊂ R. Prove that if B is countable then A is countable.

Solution: If A = ∅ then A is countable, so assume A 6= ∅. We will prove that A is
the range of a sequence. Since B is countable, it is the range of a sequence {f(n)},
i.e., f : N → B is surjective (onto B). Define a sequence g(n) recursively as follows.
Since ∅ 6= A ⊂ B, the well-ordering of the natural numbers implies that there is a
least natural number i such that f(i) ∈ A. Let g(1) = g(2) = · · · = g(i) = f(i) and
for all n > i let

g(n) =

{
f(n) if f(n) ∈ A ,
g(n− 1) if f(n) /∈ A .

Then {g(n)} ⊂ A. Moreoever, since A ⊂ B and f is onto B, every element of A occurs
in the sequence {f(n)}. Hence g(N) = {g(n)} = A.

6. Suppose A ⊂ R and B = {b : b = a or b = a2 for some a ∈ A}. Prove that if A is
countable then B is countable.

Solution: If A = ∅ then B = ∅, which is countable, so assume A 6= ∅. Since A is
countable, there is a sequence whose range is A, i.e., ∃f : N→ A such that f(N) = A.
Define a function g : N→ B via

g(n) =

{
f((n+ 1)/2) if n is odd,

[f(n/2)]2 if n is even.

Then the range of the sequence {g(n)} is B, so B is countable.

7. Show (a) that no interior point of a set can be a boundary point, (b) that it is possible
for an accumulation point to be a boundary point, and (c) that every isolated point
must be a boundary point.

Solution: Consider a set E ⊆ R.

(a) For any x ∈ E◦, there exists c > 0 such that (x− c, x+ c) ⊆ E. But (x− c, x+ c)
is therefore a neighbourhood of x that contains no points of R \E, i.e., x is not a
boundary point of E.

(b) Suppose E = (0, 1]. The point 0 /∈ E, but 0 is an accumulation point of E since
any neighbourhood of 0 contains points of E.

(c) Suppose x is an isolated point of a set E ⊂ R. Then there is a neighbourhood
(x− c, x+ c) of x for which x is the only element of E. Any other neighbourhood
(x − d, x + d) of x contains x, and regardless of whether d is less than or greater
than c, there are points of (x− c, x+ c) \ {x} in (x− d, x+ d), so x is a boundary
point of E.
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8. Express the closed interval [0, 1] as an intersection of a sequence of open sets. Can it
also be expressed as a union of a sequence of open sets?

Solution: For the first part, note that

[0, 1] =
∞⋂
n=1

(
− 1

n
, 1 +

1

n

)
.

For the second part, note that any union of open sets is open, yet [0, 1] is not open so
it cannot be expressed as union of open sets. (Note that it is important to state that
[0, 1] is “not open”. The fact that [0, 1] is closed does not imply on its own that [0, 1]
is not open; recall that R is both open and closed.)

To prove that the union of a sequence of open sets is open, let

U =
∞⋃
n=1

Un

be a union of a sequence of open sets {Un}. If x ∈ U then there must be an open set
Ui such that x ∈ Ui. But Ui ⊆ U , which implies x is an interior point of U , i.e., U is
open.

To prove more generally (and slightly more abstractly) that any union of open sets is
open, suppose U is a union of open sets. If x ∈ U then there must be an open set
U ⊆ U such that x ∈ U , which implies x is an interior point of U , i.e., U is open.
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