
Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 2 (Solutions)

This assignment was due in the appropriate locker on Friday 1 Feb 2019 at 1:25pm.

1. Did you know that all horses are the same colour?

What is wrong with the following proof by induction?

Theorem 1. All horses are the same colour.

Proof. Let P (n) be the proposition “Any n horses are the same colour.”

Consider the base case of one horse. It is obviously the same colour, so P (1) is true.

Now assume P (k) is true and consider a collection of k + 1 horses, which we will
agree to label h1, h2, . . . , hk, hk+1. Horses h1, . . . , hk form a collection of k horses, so
by the induction hypothesis, they are all the same colour. Similarly, h2, . . . , hk+1 form
a collection of k horses, so they are all the same colour. But horses h2, . . . , hk are in
both collections, so all k + 1 horses must be the same colour!

Hence, by the principle of mathematical induction, P (n) is true for all n ∈ N, i.e., all
horses are the same colour.

With thanks to my undergraduate analysis tutor, Costa Roussakis,
who first alerted me to this illuminating argument. –DE

Solution: The error occurs almost immediately, when considering P (1). What exactly
does the author mean by one thing being “the same colour”. The expression “the same
colour” has meaning only when comparing at least two things. The base case for the
proposition P (n) is actually n = 2, not n = 1. Good luck proving P (2)!

Another comment worth making—also made strongly to me by Costa Roussakis—is
that you should always avoid “obviously”, “as we all know”, “it is self-evident that”,
or any similar phrases in your proofs. Such words or phrases make the reader feel like
they must be stupid if they don’t see why the claim is true, which discourages them
from thinking carefully about it. Instead of saying something is obvious, explain why
it is true so your argument can be dissected! You will certainly not get credit for saying
something is “obvious” on your assignments, tests or exam. More importantly, in any
context, it is always better to articulate arguments clearly and concisely than to say
the conclusion is obvious.

2. Use the formal definition of a limit of a sequence to prove that
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(a) lim
n→∞

n + 1

n + 2
= 1 ;

Solution: Given ε > 0 we must show there exists N ∈ N such that for all n ≥ N∣∣∣∣n + 1

n + 2
− 1

∣∣∣∣ < ε . (∗)

To see how to achieve this, consider that

n + 1

n + 2
− 1 =

n + 2− 1

n + 2
− 1 = 1− 1

n + 2
− 1 = − 1

n + 2
,

so (*) is equivalent to
1

n + 2
< ε ,

which is in turn equivalent to

n + 2 >
1

ε
.

Therefore, given ε > 0, choose (by the Archimedean property) N ∈ N such that
N > 1/ε. Then N + 2 > 1/ε. Moreover, for any n ≥ N we also have n + 2 > ε,
and hence 1/(n + 2) < ε. From our calculation above, this proves that ∀n ≥ N ,
|(n + 2)/(n + 1)− 1| < ε, as required.

(b) lim
n→∞

n3 − 1

n4 − 1
= 0 ;

Solution: Given ε > 0 we must show there exists N ∈ N such that for all n ≥ N∣∣∣∣n3 − 1

n4 − 1

∣∣∣∣ < ε .

First note that ∀n > 1

n3 − 1

n4 − 1
=

(n− 1)(n2 + n + 1)

(n− 1)(n3 + n2 + n + 1)
=

(n2 + n + 1)

(n3 + n2 + n + 1)
(1a)

<
(n2 + n + 1)

n3
=

1

n
+

1

n2
+

1

n3
. (1b)

Also note that ∀n > 1
1

n3
<

1

n2
<

1

n
.

Therefore, given ε > 0, choose N ∈ N such that 1/N < ε/3, i.e., N > 3/ε. Then,
∀n ≥ N , we have n > 3/ε, i.e., 1/n < ε/3, and hence

1

n
+

1

n2
+

1

n3
<

1

n
+

1

n
+

1

n
<

ε

3
+

ε

3
+

ε

3
= ε .

It then follows from (1) that ∀n > 1

0 <
n3 − 1

n4 − 1
< ε ,

and hence ∣∣∣∣n3 − 1

n4 − 1

∣∣∣∣ < ε ,

as required.
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(c) lim
n→∞

n!

nn
= 0 ;

Solution: We must show that given any ε > 0, there exists N ∈ N such that
∀n ≥ N

n!

nn
< ε .

To see this, note that for any n > 5 we can write

n!

nn
=

1

n
· 2

n
· · · n− 2

n
· n− 1

n
· n
n

=
1

n
· 2

n
· · · n− 2

n
· n− 1

n

<
1

n
· 2

n
· · · n− 2

n
...

<
1

n
· 2

n
· 3

n

<
1

n
· 2

n

<
1

n
.

Therefore, given ε > 0, choose a natural number N > 1/ε, i.e., such that 1/N < ε.
Then 1/n < ε for any n ≥ N , and hence by the sequence of inequalities above, it
follows that n!/nn < ε ∀n ≥ N , as required.

3. Use the formal definition to prove that the following sequences an diverge as n→∞.

(a) an = 1 + nd, d 6= 0.

Solution: Suppose d > 0. Given any M ∈ R, find a natural number N > M/d
(by the Archimedean property). Then for any n ≥ N we have an = 1 + nd ≥
1 + Nd > Nd > (M/d)d = M . Hence an diverges to ∞. Similarly, for d < 0,
an → −∞.

(b) a1 = 1, an+1 = 2an for n ∈ N.

Solution: Consider the first few sequence elements:

a1 = 20 = 1, a2 = 21 = 2, a3 = 22, a4 = 222 , a5 = 222
2

, . . .

This appears to grow very quickly and the claim that {an} diverges is certainly
plausible. To prove formally that an →∞, we need to demonstrate that an can be
made as large as we like. To that end, let’s first prove that an ≥ n for all n ∈ N,
which can be established by induction. The base case is the statement a1 ≥ 1,
which is true because we are told that, in fact, a1 = 1. Now suppose an ≥ n. Then
an − n ≥ 0 so 2an = 2an−n+n = 2an−n2n ≥ 2n. Consequently,

an+1 = 2an ≥ 2n ≥ n + 1 ,
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as required. (The statement 2n ≥ n + 1 really needs proof as well, but this is easy
to show by induction via 2n+1 = 2 · 2n ≥ 2 · n ≥ n + 1.) To complete our proof,
given M ∈ R, choose a natural number N > M . Then N + 1 > M and hence
n+1 > M ∀n ≥ N . But our analysis above then implies an ≥ n+1 > M ∀n ≥ N .
Since M was an arbitrary real number, we have an →∞.

4. (a) Suppose that {an} is a convergent sequence for which 0 ≤ an ≤ 1 for all n ∈ N
and L = limn→∞ an. Prove that L ∈ [0, 1].

Solution: Since 0 ≤ an ≤ 1, we know {an} is bounded above by 1. Let a =
sup{an}. We must have a ≤ 1 since 1 is an upper bound. Now suppose L > 1
and let ε = (L − 1)/2. Since an → L, ∃N ∈ N such that |aN − L| < ε, i.e.,
−ε < aN − L < ε,

i.e., − L− 1

2
< aN − L <

L− 1

2

i.e.,
L + 1

2
< aN <

3L− 1

2
.

But L > 1, so (L+ 1)/2 > 1, and hence aN > 1 ≥ a. Apparently aN is larger than
the least upper bound of {an}. ⇒⇐ Therefore, the assumption that L > 1 must
be false, i.e., we must have L ≤ 1. A similar argument shows L ≥ 0.

(b) Find a convergent sequence {an} of points all in (0, 1) such that limn→∞ an is not
in (0, 1).

Solution: Let an = 1
n+1

. Then 0 < an < 1 for all n ∈ N, but an → 0 /∈ (0, 1).

5. Show that the formal definition of convergence of a sequence that we gave in class is
equivalent to the following slight modification:

We write lim
n→∞

sn = L provided that for every positive integer m there is an

integer N so that |sn − L| < 1
m

whenever n ≥ N .

Solution: The usual formal definition is

lim
n→∞

sn = L
def
= ∀ε > 0 ∃N ∈ N )– n ≥ N =⇒ |sn − L| < ε .

First suppose that sn → L according to the “slight modification”. To verify the usual
definition, given ε > 0, choose (via the Archimedean property) m ∈ N such that
m > 1/ε, i.e., 1/m < ε. Since sn → L according to the “slight modification”, we can
choose N ∈ N such that |sn − L| < 1

m
for all n ≥ N . Then, since 1/m < ε, we have

|sn − L| < ε for all n ≥ N , as required.

Now suppose that sn → L according to the usual definition. To verify the “slight
modification”, given m ∈ N, let ε = 1/m. Since sn → L according to the the usual
definition, choose N ∈ N such that ∀n ≥ N , |sn − L| < ε. But since ε = 1/m, this
immediately implies |sn − L| < 1

m
∀n ≥ N , as required.
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