Mathematics 3A03 Real Analysis I

http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 2

This assignment is due in the appropriate locker on Friday 1 Feb 2019 at 1:25pm.

 Did you know that all horses are the same colour? What is wrong with the following proof by induction? Theorem 1. All horses are the same colour.

Proof. Let P(n) be the proposition "Any n horses are the same colour."

Consider the base case of one horse. It is obviously the same colour, so P(1) is true.

Now assume P(k) is true and consider a collection of k + 1 horses, which we will agree to label $h_1, h_2, \ldots, h_k, h_{k+1}$. Horses h_1, \ldots, h_k form a collection of k horses, so by the induction hypothesis, they are all the same colour. Similarly, h_2, \ldots, h_{k+1} form a collection of k horses, so they are all the same colour. But horses h_2, \ldots, h_k are in both collections, so all k + 1 horses must be the same colour!

Hence, by the principle of mathematical induction, P(n) is true for all $n \in \mathbb{N}$, *i.e.*, all horses are the same colour.

With thanks to my undergraduate analysis tutor, Costa Roussakis, who first alerted me to this illuminating argument. –DE

- 2. Use the formal definition of a limit of a sequence to prove that
 - (a) $\lim_{n \to \infty} \frac{n+1}{n+2} = 1$; (b) $\lim_{n \to \infty} \frac{n^3 - 1}{n^4 - 1} = 0$; (c) $\lim_{n \to \infty} \frac{n!}{n^n} = 0$;

3. Use the formal definition to prove that the following sequences $a_n \underline{diverge}$ as $n \to \infty$.

- (a) $a_n = 1 + nd, d \neq 0.$
- (b) $a_1 = 1, a_{n+1} = 2^{a_n}$ for $n \in \mathbb{N}$.
- 4. (a) Suppose that $\{a_n\}$ is a convergent sequence for which $0 \le a_n \le 1$ for all $n \in \mathbb{N}$ and $L = \lim_{n \to \infty} a_n$. Prove that $L \in [0, 1]$.
 - (b) Find a convergent sequence $\{a_n\}$ of points all in (0, 1) such that $\lim_{n\to\infty} a_n$ is not in (0, 1).
- 5. Show that the formal definition of convergence of a sequence that we gave in class is equivalent to the following slight modification:

We write $\lim_{n \to \infty} s_n = L$ provided that for every positive integer *m* there is an integer *N* so that $|s_n - L| < \frac{1}{m}$ whenever $n \ge N$.