Mathematics 3A03 Real Analysis I
 http://www.math.mcmaster.ca/earn/3A03

2019 ASSIGNMENT 2

This assignment is due in the appropriate locker on Friday 1 Feb 2019 at 1:25pm.

1. Did you know that all horses are the same colour?

What is wrong with the following proof by induction?
Theorem 1. All horses are the same colour.
Proof. Let $P(n)$ be the proposition "Any n horses are the same colour."
Consider the base case of one horse. It is obviously the same colour, so $P(1)$ is true.
Now assume $P(k)$ is true and consider a collection of $k+1$ horses, which we will agree to label $h_{1}, h_{2}, \ldots, h_{k}, h_{k+1}$. Horses h_{1}, \ldots, h_{k} form a collection of k horses, so by the induction hypothesis, they are all the same colour. Similarly, h_{2}, \ldots, h_{k+1} form a collection of k horses, so they are all the same colour. But horses h_{2}, \ldots, h_{k} are in both collections, so all $k+1$ horses must be the same colour!
Hence, by the principle of mathematical induction, $P(n)$ is true for all $n \in \mathbb{N}$, i.e., all horses are the same colour.

With thanks to my undergraduate analysis tutor, Costa Roussakis, who first alerted me to this illuminating argument. -DE
2. Use the formal definition of a limit of a sequence to prove that
(a) $\lim _{n \rightarrow \infty} \frac{n+1}{n+2}=1$;
(b) $\lim _{n \rightarrow \infty} \frac{n^{3}-1}{n^{4}-1}=0$;
(c) $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$;
3. Use the formal definition to prove that the following sequences a_{n} diverge as $n \rightarrow \infty$.
(a) $a_{n}=1+n d, d \neq 0$.
(b) $a_{1}=1, a_{n+1}=2^{a_{n}}$ for $n \in \mathbb{N}$.
4. (a) Suppose that $\left\{a_{n}\right\}$ is a convergent sequence for which $0 \leq a_{n} \leq 1$ for all $n \in \mathbb{N}$ and $L=\lim _{n \rightarrow \infty} a_{n}$. Prove that $L \in[0,1]$.
(b) Find a convergent sequence $\left\{a_{n}\right\}$ of points all in $(0,1)$ such that $\lim _{n \rightarrow \infty} a_{n}$ is not in $(0,1)$.
5. Show that the formal definition of convergence of a sequence that we gave in class is equivalent to the following slight modification:

We write $\lim _{n \rightarrow \infty} s_{n}=L$ provided that for every positive integer m there is an integer N so that $\left|s_{n}-L\right|<\frac{1}{m}$ whenever $n \geq N$.

