
Mathematics 3A03 Real Analysis I

2019 ASSIGNMENT 1 (Solutions)

This assignment was due in the appropriate locker on Friday 18 Jan 2019 at
1:25pm.

1. Prove that
√

13 is irrational.

Solution: Suppose, in order to derive a contradiction, that
√

13 ∈ Q. Then there
exist two positive integers m and n with gcd(m,n) = 1 such that m/n =

√
13.

∴
(m
n

)2

=
(√

13
)2

=⇒ m2

n2
= 13 =⇒ m2 = 13n2.

Thus, m2 is a multiple of 13. It follows—from analysis we will give below—that m is a
multiple of 13. Therefore, m = 13k for some k ∈ N, which implies m2 = 169k2 = 13n2,
and hence 13k2 = n2. Thus, n2 is a multiple of 13, which implies—again from our
analysis below—that n in a multiple of 13.

Thus, both m and n contain a factor of 13, which contradicts gcd(m,n) = 1. Our
initial assumption that

√
13 ∈ Q must therefore be false, and we can conclude that√

13 6∈ Q. However, this argument depends on the fact that:

A natural number m contains a factor of 13 if and only if its square m2

contains a factor of 13.

This a straightforward consequence of the Fundamental Theorem of Arithmetic, but
rather than pulling that non-trivial result out of the air, we will prove the above
statement directly. We need to prove both the “if” and “only if” directions of this
statement. The “only if” direction is easier.

“Only if” direction: If m is a multiple of 13 then there is another integer k such that
m = 13k, which implies that m2 = 169k2 = 13(13k2), i.e., m2 is also a multiple of 13.

“If” direction: If m is not a multiple of 13 then there must be integers k and ` such
that k ≥ 0, 0 < ` < 13 and m = 13k + `. Consequently, m2 = (13k + `)2 =
169k2 + 26k` + `2 = 13(13k2 + 2k`) + `2. Now for each of the 12 possible values of
` ∈ {1, 2, . . . , 12} we can easily verify that `2 is not divisible by 13. Hence m2 does not
contain a factor of 13.

Thus, m is a multiple of 13 if and only if m2 is a multiple of 13.

2. (a) Prove that if 0 < a < b then

a <
√
ab <

a + b

2
< b . (1a)
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Solution: First note that if 0 < x < y then from order axiom O4 with z = x, it
follows that

0 < x < y =⇒ x2 < xy , (∗)

whereas with z = y the same axiom implies

0 < x < y =⇒ xy < y2 , (∗∗)

and hence from transitivity (axiom O2) we have

0 < x < y =⇒ x2 < y2 . (∗3)

We can also reverse the implications: Suppose x > 0 and y > 0, and we know
x2 < y2. Then it follows that x < y. To see this, note that if x > y then (*3)
implies x2 > y2, which is false, and if x = y then x2 = y2, which is false. Therefore,
from trichotomy (O1) we must have x < y. In summary,

if x > 0 and y > 0 then x < y ⇐⇒ x2 < y2 . (♥)

Now, since a < b and a > 0, order axiom O4 implies

a2 < ab ,

from which (♥) implies

a <
√
ab ,

which establishes the first of the three inequalities in (1a). Next, since a < b,
axiom O3 implies a + b < b + b = 2b, hence

a + b

2
< b ,

establishing the third inequality in (1a). Finally, to establish the middle inequality
in (1a), note that if a > 0 and b > 0 then

√
ab <

a + b

2
⇐⇒ 2

√
ab < a + b

⇐⇒ 4ab < (a + b)2 from (♥)

⇐⇒ 4ab < a2 + 2ab + b2

⇐⇒ 0 < a2 − 2ab + b2

⇐⇒ 0 < (a− b)2 .

Since the last inequality is true for any a, b ∈ R, and all the steps are reversible
for a, b > 0, we have the middle inequality in (1a) as required.

Note: The approach taken to prove the middle inequality is often useful, i.e., if
you don’t see a direct approach to prove something then manipulate what you are
trying to prove to try to get it into a form that is easy to see is true. Provided all
your steps are reversible, you are done.
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(b) Prove that for any a, b ≥ 0,
√
ab ≤ a + b

2
. (1b)

Note: This is a special case of the arithmetic-geometric mean inequality.

Solution: In part (a), we proved that if a > 0 and b > 0 then a+b
2

>
√
ab. In fact,

each step of the argument is valid if we replace > with ≥ everywhere.

3. The maximum of two numbers x and y is denoted by max(x, y). Thus max(−1, 3) =
max(3, 3) = 3 and max(−1,−4) = max(−4,−1) = −1. The minimum of x and y is
denoted by min(x, y). Prove that

max(x, y) =
x + y + |y − x|

2
, (2a)

min(x, y) =
x + y − |y − x|

2
. (2b)

Derive a formula for max(x, y, z) and min(x, y, z), using, for example

max(x, y, z) = max(x,max(y, z)) . (3)

Solution: If x ≤ y then

|y − x| = y − x =⇒ x + y + |y − x|
2

=
x + y + y − x

2
=

2y

2
= max(x, y) ,

and a similar calculation yields the result if x > y.

For the “triple” formulae, we have

max(x, y, z) = max(x,max(y, z))

=
x + max(y, z) + |max(y, z)− x|

2

=
x + y+z+|z−y|

2
+
∣∣∣y+z+|z−y|

2
− x

∣∣∣
2

=
y + z + |z − y|+ 2x + |y + z + |z − y| − 2x|

4
.

and

min(x, y, z) = min(x,min(y, z))

=
x + min(y, z)− |min(y, z)− x|

2

=
x + y+z−|z−y|

2
−
∣∣∣y+z−|z−y|

2
− x

∣∣∣
2

=
y + z − |z − y|+ 2x− |y + z − |z − y| − 2x|

4
.
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4. Given ε > 0, prove that if

|x− x0| < min
( ε

2(|y0|+ 1)
, 1
)

and |y − y0| <
ε

2(|x0|+ 1)
, (4)

then |xy − x0y0| < ε.

Hint: Don’t try to use the formula for min that you proved in the previous problem;
it is irrelevant here. Do notice that the first condition is equivalent to two inequalities
(neither involving min), both of which are needed. Since the hypotheses (4) provide
information only about x − x0 and y − y0, it might not surprise you that the proof
depends upon writing xy − x0y0 in a way that involves x− x0 and y − y0.

Solution: The key is to add and substract something from xy − x0y0 so that we
can make use of what we are given in the new expression. Rather than xy we want
x(y − y0), so let’s add and substract xy0.

|xy − x0y0| = |xy − xy0 + xy0 − x0y0|
= |x(y − y0) + (x− x0)y0|

To proceed further, we need the triangle inequality,

|x + y| ≤ |x|+ |y| , ∀x, y ∈ R, (♠)

which can be proved, for example, by considering the cases in which x and y have the
same sign or the opposite sign. Exploiting this in our equation above, we have

|xy − x0y0| ≤ |x(y − y0)|+ |(x− x0)y0| from (♠)

<
|x| ε

2(|x0|+ 1)
+

|y0| ε
2(|y0|+ 1)

from (4)

This is progress, but we still have a variable (x) on the RHS of the inequality and
we need a constant. To cure that problem, we use the other inequality on the LHS
of (4), i.e., |x− x0| < 1, which implies—via adding zero and then using the triangle
inequality—that

|x| = |x− x0 + x0| ≤ |x− x0|+ |x0| < 1 + |x0| .

This allows us to replace |x| with |x0|+ 1 in our calculation above to obtain

|xy − x0y0| <
(|x0|+ 1)ε

2(|x0|+ 1)
+

|y0| ε
2(|y0|+ 1)

=
ε

2
+

|y0| ε
2(|y0|+ 1)

<
ε

2
+

ε

2
= ε ,

as required.
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5. For each of the following sets, find the greatest lower bound (inf), least upper bound
(sup), minimum (min) and maximum (max), if they exist. If any of these do not exist,
then indicate accordingly. Justify your assertions.

(a) (−7,∞).

(b) { 1
x

: x ∈ N and x is prime}.
(c) {(a + b)n : a, b ∈ R, −1

2
< a < b < 1

2
, n ∈ N}.

Solution: The answers to the questions are most easily summarized in a table:

Set inf sup min max

(a) (−7,∞) −7 @ @ @

(b) { 1
x

: x ∈ N and x is prime} 0 1
2

@ 1
2

(c) {(a + b)n : a, b ∈ R, −1
2
< a < b < 1

2
, n ∈ N} −1 1 @ @

To justify the entries in this table, consider the following:

(a) This interval is bounded below, with greatest lower bound −7, and not bounded
above. Since the interval is open, it has no minimum.

(b) Primes are positive numbers and the smallest prime is 2. Hence the largest element
of this set is 1

2
. On the other hand, there is no largest prime1, so there are elements

of this set that are arbitrarily close to zero, from which it follows that the greatest
lower bound is zero.

(c) −1
2
< a < b < 1

2
implies −1 < a + b < 1, which in turn implies −1 < (a + b)n < 1

for all n ∈ N. Moreover, we can choose a and b such that their sum is as close as
we like to −1 or 1.

1If you are not familiar with a proof, consider Euclid’s argument: Suppose there are finitely many primes,
say p1, p2, . . . , pn. Let x = (p1p2 · · · pn) + 1. x is an integer, but cannot be prime, because x > p for all
primes p. Yet no prime is a factor of x, which implies x is prime! ⇒⇐
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