Mathematics 3A03 Real Analysis I
 2017 ASSIGNMENT 6 (Solutions)

This assignment was due in the appropriate locker on Monday 4 Dec 2017 at $2: 25 \mathrm{pm}$.

1. Use the Fundamental Theorem of Calculus and Darboux's Theorem to give another proof of the Intermediate Value Theorem.
Solution: Let $a<b$. If f is continuous on $[a, b]$ then by FTC $F(x)=\int_{a}^{x} f$ is differentiable on $[a, b]$ and $F^{\prime}=f$. Thus f is the derivative of a function (F in particular) on $[a, b]$ so by Darboux's theorem, f satisfies the intermediate value property. This proves the IVT for a closed interval $[a, b]$. Now suppose f is defined only on the interval $(a, b]$. Then the argument above technically fails because the definition of F requires f to be defined on $[a, b]$. However, if $a<c<b$ then the argument above does show that f satisfies the IVP on $[c, b]$. Since this is true for any $c \in(a, b)$, we have the IVP on $(a, b]$ as required. If the interval in question is open at b then we obtain the IVP by a similar argument.
2. An integral equation is an equation involving integrals of an unknown function. A solution of an integral equation is a function f that satisfies the equation. Consider the integral equation

$$
\begin{equation*}
\int_{0}^{x} f=(f(x))^{2}+C \tag{*}
\end{equation*}
$$

where $C \in \mathbb{R}$ is a constant.
(a) For $C \neq 0$, find all continuous solutions of $\left(^{*}\right)$ for which f has at most one zero.

Solution: Equation $(*)$ is assumed hold for all $x \in \mathbb{R}$, and hence in particular for $x=0$. Therefore,

$$
\begin{equation*}
0=\int_{0}^{0} f=(f(0))^{2}+C \quad \Longrightarrow \quad(f(0))^{2}=-C \tag{Q}
\end{equation*}
$$

Thus, $f(0)=0 \Longleftrightarrow C=0$, and if $C>0$ then there are no functions f that satisfy $\left({ }^{*}\right)$. What if $C<0$?
If we restrict attention to continuous solutions of $\left({ }^{*}\right)$, i.e., continuous functions f, then applying FTC to $\left(^{*}\right.$) implies $f^{2}+C$ is differentiable (hence so is f^{2}) and

$$
\begin{equation*}
f(x)=\frac{d}{d x} \int_{0}^{x} f=\frac{d}{d x}\left[(f(x))^{2}+C\right]=\frac{d}{d x}\left[(f(x))^{2}\right]=2 f(x) f^{\prime}(x) \tag{**}
\end{equation*}
$$

In order to write the last equality, we need to know that f is differentiable at x, not just continuous. We will return to that below, but for now notice that Equation $\left({ }^{* *}\right)$ implies that if $f(x) \neq 0$ then $f^{\prime}(x)=\frac{1}{2}$. We are given, moreover, that f has at most one zero, so with the exception of at most one point, we have

$$
\begin{equation*}
f(x)=\frac{x}{2}+K \tag{***}
\end{equation*}
$$

for some constant $K \in \mathbb{R}$. In fact, since f is continuous, Equation (${ }^{* * *)}$ must hold for all $x \in \mathbb{R}$. In addition, inserting $x=0$ yields

$$
K=f(0)= \pm \sqrt{-C}
$$

It follows that if $C<0$ then then there are exactly two continuous solutions of $\left(^{*}\right.$) with at most one zero, namely

$$
f_{+}(x)=\frac{x}{2}+\sqrt{-C} \quad \text { and } \quad f_{-}(x)=\frac{x}{2}-\sqrt{-C}
$$

Now let us return to the issue of differentiability of f, remembering that we used that fact to derive our two continuous solutions. Consider any particular $x_{0} \in \mathbb{R}$ for which $f\left(x_{0}\right) \neq 0$. We have either $f\left(x_{0}\right)>0$ or $f\left(x_{0}\right)<0$. Suppose $f\left(x_{0}\right)>0$. Then, since f is continuous, the neighbourhood sign lemma implies $f(x)>0$ in a neighbourhood of x_{0}, say $\left(x_{0}-\delta, x_{0}+\delta\right)$. Consequently, for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ we have

$$
f(x)=\sqrt{(f(x))^{2}}
$$

Hence, on the interval $\left(x_{0}-\delta, x_{0}+\delta\right), f$ is the composition of two differentiable functions, namely f^{2} and $\sqrt{ }$. (the crucial point here is that the square root function is differentiable at points where its argument is strictly positive). Thus, f is differentiable in a neighbourhood of every $x_{0} \in \mathbb{R}$, except points at which f is zero. But there is at most one such point, which is therefore contained in a neighbourhood of the form $\left(x_{0}-\delta, x_{0}+\delta\right)$ on which f is differentiable. Therefore f is differentiable everywhere.
(b) For $C \neq 0$, find a solution of $\left({ }^{*}\right)$ that is 0 on an interval $(-\infty, b]$ with $b<0$, but non-zero for $x>b$.
Solution: Given $C<0$, we can construct such a solution using f_{+}defined in ($\boldsymbol{\oplus}$) above. Let

$$
b=-2 \sqrt{-C}
$$

and define

$$
f(x)= \begin{cases}0 & x \leq b \\ f_{+}(x) & b<x\end{cases}
$$

To see that this function is a solution to $\left(^{*}\right)$, not that we know from part (a) that it is a solution on $[b, \infty)$. In addition, note that

$$
\begin{aligned}
\int_{0}^{b} f & =\int_{0}^{b} f_{+}=\int_{0}^{b}\left(\frac{x}{2}+\sqrt{-C}\right) d x=\left.\left(\frac{x^{2}}{4}+(\sqrt{-C}) x+\text { const }\right)\right|_{0} ^{b} \\
& =\frac{b^{2}}{4}+(\sqrt{-C}) b=\frac{b^{2}}{4}-\frac{b^{2}}{2}=-\frac{b^{2}}{4}
\end{aligned}
$$

which can also be seen directly geometrically since we just have minus the area of a triangle: $-\frac{(-b) \cdot f(0)}{2}=\frac{b \cdot \sqrt{-C}}{2}=-\frac{b^{2}}{4}$. Now for any $x<b$, there is no further contribution to the integral on the LHS of $\left(^{*}\right)$ and $f(x)=f(b)$ on the RHS, so f is a solution of $\left({ }^{*}\right)$ for all $x \in \mathbb{R}$.
(c) For $C=0$, and any interval $[a, b]$ with $a<0<b$, find a solution of $\left(^{*}\right)$ that is 0 on $[a, b]$, but non-zero elsewhere.
Solution: Let

$$
f(x)= \begin{cases}0 & a \leq x \leq b \\ \frac{x}{2}-\frac{a}{2} & x<a \\ \frac{x}{2}-\frac{b}{2} & x>b\end{cases}
$$

Note that since $C=0,\left(^{*}\right)$ is simply $\int_{0}^{x} f=(f(x))^{2}$. The zero function is one solution to this equation on \mathbb{R}, and it remains a solution on $[a, b]$ for $a<0<b$. For $x>b$, the area bounded by the function f is a triangle with base $x-b$ and height $f(x)=(x-b) / 2$, hence $\int_{0}^{b} f(x)=\frac{1}{2}(x-b)(x-b) / 2=(x-b)^{2} / 4$; since we also have $(f(x))^{2}=((x-b) / 2)^{2}=(x-b)^{2} / 4, f$ satisfies $\left(^{*}\right)$ for any $x>b$. The analysis is similar for $x<a$, except that we need to be careful to keep track of signs.
3. For each of the following sequences $\left\{f_{n}\right\}$, determine the pointwise limit of $\left\{f_{n}\right\}$ (if it exists) on the indicated interval, and establish whether $\left\{f_{n}\right\}$ converges uniformly to this function.
(i) $f_{n}(x)=\frac{e^{x}}{x^{2 n}}, \quad$ on $(1, \infty)$.

Solution: Note that the numerator does not depend on n. Consequently, for any $x>1$ we have the pointwise limit

$$
f(x)=\lim _{n \rightarrow \infty} \frac{e^{x}}{x^{2 n}}=e^{x} \lim _{n \rightarrow \infty} \frac{1}{x^{2 n}}=0 .
$$

On the other hand, for any given $n \in \mathbb{N}$ we have

$$
\lim _{x \rightarrow \infty} f_{n}(x)=\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2 n}}=\infty
$$

so every f_{n} is unbounded. Since the limit function $f \equiv 0$ is bounded, the convergence cannot be uniform.
(ii) $f_{n}(x)=e^{-n x^{2}}, \quad$ on $[-1,1]$.

Solution: For all $n \in \mathbb{N}$ we have $f_{n}(0)=e^{0}=1$. In addition, for all $x \neq 0$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=0$. Therefore, the pointwise limit is

$$
f(x)= \begin{cases}1 & x=0 \\ 0 & x \neq 0\end{cases}
$$

Since each f_{n} is continuous but f is not continuous, the convergence is not uniform.
(iii) $f_{n}(x)=\frac{e^{-x^{2}}}{n}, \quad$ on \mathbb{R}.

Solution: Since the numerator does not depend on n, we have $\forall x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{e^{-x^{2}}}{n}=e^{-x^{2}} \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Therefore the pointwise limit is $f \equiv 0$. In fact, $f_{n} \rightarrow f$ uniformly. Note that $0<e^{-x^{2}} \leq 1$ for all $x \in \mathbb{R}$, and hence $0<f_{n}(x) \leq \frac{1}{n}$ for all $x \in \mathbb{R}$. Given $\varepsilon>0$, choose $N \in \mathbb{N}$ such that $N>1 / \varepsilon$. Then for all $n \geq N$, we have $\frac{1}{n}<\varepsilon$ and hence $0<f_{n}(x)<\varepsilon$ for all $x \in \mathbb{R}$, i.e., $f_{n}(x)$ converges uniformly to the zero function.
4. Suppose that $\left\{f_{n}\right\}$ is a sequence of nonnegative bounded functions on $A \subseteq \mathbb{R}$, and let $M_{n}=\sup f_{n}$. If $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on A, does it follow that $\sum_{n=1}^{\infty} M_{n}$ converges (a converse to the Weierstrass M-test)?
Solution: No, it does not follow. Consider $A=[1, \infty)$ and define

$$
f_{n}(x)= \begin{cases}\frac{1}{n} & n \leq x<n+1 \\ 0, & \text { otherwise }\end{cases}
$$

Then each f_{n} is non-negative and bounded and the series converges uniformly to

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x)=\frac{1}{\lfloor x\rfloor} .
$$

But $M_{n}=\sup f_{n}=\frac{1}{n}$ and $\sum_{n=1}^{\infty} M_{n}$ diverges. Another example, which is perhaps slightly simpler, is to define $f_{n}(n)=\frac{1}{n}$ and $f_{n}(x)=0$ for all $x \neq n$.
5. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{x}{n\left(1+n x^{2}\right)}
$$

converges uniformly on \mathbb{R}.
Solution: Let $f_{n}(x)=\frac{x}{n\left(1+n x^{2}\right)}$ and note that

$$
f_{n}^{\prime}(x)=\frac{1-n x^{2}}{n\left(1+n x^{2}\right)^{2}}
$$

Moreover, $\lim _{x \rightarrow-\infty} f_{n}(x)=\lim _{x \rightarrow \infty} f_{n}(x)=0$. Hence f_{n} has exactly two critical points, where $1-n x^{2}=0$, i.e., $x= \pm \frac{1}{\sqrt{n}}$. Thus

$$
-\frac{1}{2 n^{3 / 2}}=f_{n}\left(-\frac{1}{\sqrt{n}}\right) \leq f_{n}(x) \leq f_{n}\left(\frac{1}{\sqrt{n}}\right)=\frac{1}{2 n^{3 / 2}}, \quad \forall x \in \mathbb{R}
$$

Consequently, if we let $M_{n}=\frac{1}{2 n^{3 / 2}}$ then the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges by the Weierstrass M-test.

