Mathematics 3A03 Real Analysis I
2017 ASSIGNMENT 6 (Solutions)

This assignment was due in the appropriate locker on Monday 4 Dec 2017 at
2:25pm.

1. Use the Fundamental Theorem of Calculus and Darboux’s Theorem to give another
proof of the Intermediate Value Theorem.

Solution: Let a <b. If f is continuous on [a,b] then by FTC F(z) = [ f is differen-
tiable on [a,b] and F’ = f. Thus f is the derivative of a function (F in particular) on
la, b] so by Darboux’s theorem, f satisfies the intermediate value property. This proves
the IVT for a closed interval [a, b]. Now suppose f is defined only on the interval (a, b].
Then the argument above technically fails because the definition of F' requires f to
be defined on [a,b]. However, if a < ¢ < b then the argument above does show that
f satisfies the IVP on [c, b]. Since this is true for any ¢ € (a,b), we have the IVP on
(a, b] as required. If the interval in question is open at b then we obtain the IVP by a
similar argument. O]

2. An integral equation is an equation involving integrals of an unknown function. A
solution of an integral equation is a function f that satisfies the equation. Consider
the integral equation

| 1= @) e, *)
0
where C' € R is a constant.

(a) For C' # 0, find all continuous solutions of (*) for which f has at most one zero.

Solution: Equation (*) is assumed hold for all x € R, and hence in particular for
x = 0. Therefore,

OZ/OOf:(f(O))2+O —  (f(0)*=-C. ()

Thus, f(0) =0 <= C =0, and if C' > 0 then there are no functions f that
satisfy (*). What if C' < 07
If we restrict attention to continuous solutions of (*), i.e., continuous functions f,
then applying FTC to (*) implies f% + C is differentiable (hence so is f?) and

d [* d 2 d 2

@ =3 [ 1=y ] = L)) —2w@re. @)
In order to write the last equality, we need to know that f is differentiable at
x, not just continuous. We will return to that below, but for now notice that
Equation (**) implies that if f(z) # 0 then f'(z) = 5. We are given, morcover,
that f has at most one zero, so with the exception of at most one point, we have

@) =5 +K. (%)
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for some constant K € R. In fact, since f is continuous, Equation (***) must hold
for all x € R. In addition, inserting z = 0 yields

K = f(0) =+v-C.

It follows that if C' < 0 then then there are exactly two continuous solutions of (*)
with at most one zero, namely
x

filz) = 5T v—C and f(2)=—-—-V-C. (M)
Now let us return to the issue of differentiability of f, remembering that we used
that fact to derive our two continuous solutions. Consider any particular xy € R
for which f(zo) # 0. We have either f(x¢) > 0 or f(xz¢) < 0. Suppose f(zq) > 0.
Then, since f is continuous, the neighbourhood sign lemma implies f(z) > 0 in a

neighbourhood of xq, say (z¢ — 6, xo + §). Consequently, for all = € (xg — 6§,z + 9)
we have

Hence, on the interval (xg — 0,z + 9), f is the composition of two differentiable
functions, namely f? and /- (the crucial point here is that the square root function
is differentiable at points where its argument is strictly positive). Thus, f is differ-
entiable in a neighbourhood of every zy € R, except points at which f is zero. But
there is at most one such point, which is therefore contained in a neighbourhood of
the form (xg — 6, x¢ + J) on which f is differentiable. Therefore f is differentiable
everywhere. O]

For C' # 0, find a solution of (*) that is 0 on an interval (—oo,b] with b < 0, but
non-zero for x > b.

Solution: Given C' < 0, we can construct such a solution using f, defined in ()

above. Let
b=-2v-C,

f(x)z{o e

and define

fi(z) b<u.

To see that this function is a solution to (*), not that we know from part (a) that
it is a solution on [b, 00). In addition, note that

2 b

/Ovbf:/()vl)er:/Ob(g_i_\/—C)dl’: (I—+(\/—C)x+const)
bZ
—+

4
b b b?
(V_C>bzz_§:—z7

0

4

which can also be seen directly geometrically since we just have minus the area
. —b). T/ — 2 .
of a triangle: —{ b)Qf(O) =t 5 ¢ = —%. Now for any x < b, there is no further

contribution to the integral on the LHS of (*) and f(z) = f(b) on the RHS, so f
is a solution of (*) for all z € R. O
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(c) For C' =0, and any interval [a,b] with a < 0 < b, find a solution of (*) that is 0
on [a, b], but non-zero elsewhere.

Solution: Let

0 a<zx<hb,
N X a
fl@)=95-% z<a,
b
%—5 5L'>b.
X

Note that since C' = 0, (*) is simply / f= (f(x))2 The zero function is one
0
solution to this equation on R, and it remains a solution on [a,b] for a < 0 < b.

For x > b, the area bounded by the function f is a triangle with base x — b and
height f(x) = (x —b)/2, hence fobf(x) =1z —b)(z — b)/2 = (z — b)?/4; since we
also have (f(:p))2 = ((z - b)/2)2 = (x — b)?/4, f satisfies (*) for any x > b. The
analysis is similar for x < a, except that we need to be careful to keep track of
signs. [

3. For each of the following sequences {f,}, determine the pointwise limit of {f,} (if it
exists) on the indicated interval, and establish whether {f,} converges uniformly to
this function.

: e’

(i) fu(z) = pErt on (1,00).
Solution: Note that the numerator does not depend on n. Consequently, for
any z > 1 we have the pointwise limit

(&
= lim — =¢€* lim — =0.
flz) = lim o =€ lim —

On the other hand, for any given n € N we have

. . (&
fim falw) = lim 57 =0,

so every f, is unbounded. Since the limit function f = 0 is bounded, the conver-
gence cannot be uniform. O

(ii) fu(z) =e ™,  on[-1,1].
Solution: For all n € N we have f,(0) = ¢ = 1. In addition, for all = # 0 we
have lim,,,, fn(z) = 0. Therefore, the pointwise limit is

1 =0,
f(x):{o x # 0.

Since each f, is continuous but f is not continuous, the convergence is not uni-
form. O
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e
(iii) fo(x) = : on R.
n
Solution: Since the numerator does not depend on n, we have Vx € R,
6_$2 2 . 1

lim f,(z) = lim =e ¥ lim —=0.
n—00 n—oo N n—oo N

Therefore the pointwise limit is f = 0. In fact, f, — f uniformly. Note that
0<e ™ <1forallx €R,and hence 0 < f,(v) < L for all z € R. Given & > 0,
choose N € N such that N > 1/e. Then for all n > N, we have % < ¢ and
hence 0 < f,(z) < € for all x € R, i.e., f,(z) converges uniformly to the zero
function. O]

4. Suppose that {f,} is a sequence of nonnegative bounded functions on A C R, and
let M, = sup f,. If > 7 f, converges uniformly on A, does it follow that Y>>, M,
converges (a converse to the Weierstrass M-test)?

Solution: No, it does not follow. Consider A = [1,00) and define

fn(x) =

% n<r<n+1
0, otherwise.

Then each f, is non-negative and bounded and the series converges uniformly to

= ;fn(x) = m

But M, = sup f, = ;- and > o> M, diverges. Another example, which is perhaps
slightly simpler, is to define f,(n) = £ and f,(z) = 0 for all z # n. O

5. Prove that the series -
nz::l n(l+ nx2
converges uniformly on R.

Solution: Let f,(z) = ; and note that

(1+
1 —na?
I —
fnlz) = n(1+ nx?)?"
Moreover, lim,_,_ fn(x) = lim, o fu(x) = 0. Hence f, has exactly two critical

points, where 1 — nz? =0, i.e., v = :I:\/Lﬁ. Thus

1 1 1 1
< —) = —= Vr € R.
\/ﬁ) S

In3/2’
Consequently, if we let M,, = 271#3/2 then the series Y~ | f,(x) converges by the Weier-
strass M-test. 0
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