
Mathematics 3A03 Real Analysis I

2017 ASSIGNMENT 6 (Solutions)

This assignment was due in the appropriate locker on Monday 4 Dec 2017 at
2:25pm.

1. Use the Fundamental Theorem of Calculus and Darboux’s Theorem to give another
proof of the Intermediate Value Theorem.

Solution: Let a < b. If f is continuous on [a, b] then by FTC F (x) =
∫ x

a
f is differen-

tiable on [a, b] and F ′ = f . Thus f is the derivative of a function (F in particular) on
[a, b] so by Darboux’s theorem, f satisfies the intermediate value property. This proves
the IVT for a closed interval [a, b]. Now suppose f is defined only on the interval (a, b].
Then the argument above technically fails because the definition of F requires f to
be defined on [a, b]. However, if a < c < b then the argument above does show that
f satisfies the IVP on [c, b]. Since this is true for any c ∈ (a, b), we have the IVP on
(a, b] as required. If the interval in question is open at b then we obtain the IVP by a
similar argument.

2. An integral equation is an equation involving integrals of an unknown function. A
solution of an integral equation is a function f that satisfies the equation. Consider
the integral equation ∫ x

0

f =
(
f(x)

)2
+ C , (*)

where C ∈ R is a constant.

(a) For C 6= 0, find all continuous solutions of (*) for which f has at most one zero.

Solution: Equation (*) is assumed hold for all x ∈ R, and hence in particular for
x = 0. Therefore,

0 =

∫ 0

0

f =
(
f(0)

)2
+ C =⇒

(
f(0)

)2
= −C . (♥)

Thus, f(0) = 0 ⇐⇒ C = 0, and if C > 0 then there are no functions f that
satisfy (*). What if C < 0?

If we restrict attention to continuous solutions of (*), i.e., continuous functions f ,
then applying FTC to (*) implies f 2 + C is differentiable (hence so is f 2) and

f(x) =
d

dx

∫ x

0

f =
d

dx

[(
f(x)

)2
+ C

]
=

d

dx

[(
f(x)

)2]
= 2f(x)f ′(x) . (**)

In order to write the last equality, we need to know that f is differentiable at
x, not just continuous. We will return to that below, but for now notice that
Equation (**) implies that if f(x) 6= 0 then f ′(x) = 1

2
. We are given, moreover,

that f has at most one zero, so with the exception of at most one point, we have

f(x) =
x

2
+K , (***)
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for some constant K ∈ R. In fact, since f is continuous, Equation (***) must hold
for all x ∈ R. In addition, inserting x = 0 yields

K = f(0) = ±
√
−C .

It follows that if C < 0 then then there are exactly two continuous solutions of (*)
with at most one zero, namely

f+(x) =
x

2
+
√
−C and f−(x) =

x

2
−
√
−C . (♠)

Now let us return to the issue of differentiability of f , remembering that we used
that fact to derive our two continuous solutions. Consider any particular x0 ∈ R
for which f(x0) 6= 0. We have either f(x0) > 0 or f(x0) < 0. Suppose f(x0) > 0.
Then, since f is continuous, the neighbourhood sign lemma implies f(x) > 0 in a
neighbourhood of x0, say (x0− δ, x0 + δ). Consequently, for all x ∈ (x0− δ, x0 + δ)
we have

f(x) =

√(
f(x)

)2
.

Hence, on the interval (x0 − δ, x0 + δ), f is the composition of two differentiable
functions, namely f 2 and

√
· (the crucial point here is that the square root function

is differentiable at points where its argument is strictly positive). Thus, f is differ-
entiable in a neighbourhood of every x0 ∈ R, except points at which f is zero. But
there is at most one such point, which is therefore contained in a neighbourhood of
the form (x0 − δ, x0 + δ) on which f is differentiable. Therefore f is differentiable
everywhere.

(b) For C 6= 0, find a solution of (*) that is 0 on an interval (−∞, b] with b < 0, but
non-zero for x > b.

Solution: Given C < 0, we can construct such a solution using f+ defined in (♠)
above. Let

b = −2
√
−C ,

and define

f(x) =

{
0 x ≤ b

f+(x) b < x.

To see that this function is a solution to (*), not that we know from part (a) that
it is a solution on [b,∞). In addition, note that∫ b

0

f =

∫ b

0

f+ =

∫ b

0

(x
2

+
√
−C
)
dx =

(x2
4

+
(√
−C
)
x+ const

)∣∣∣∣b
0

=
b2

4
+
(√
−C
)
b =

b2

4
− b2

2
= −b

2

4
,

which can also be seen directly geometrically since we just have minus the area
of a triangle: − (−b)·f(0)

2
= b·

√
−C
2

= − b2

4
. Now for any x < b, there is no further

contribution to the integral on the LHS of (*) and f(x) = f(b) on the RHS, so f
is a solution of (*) for all x ∈ R.
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(c) For C = 0, and any interval [a, b] with a < 0 < b, find a solution of (*) that is 0
on [a, b], but non-zero elsewhere.

Solution: Let

f(x) =


0 a ≤ x ≤ b,

x
2
− a

2
x < a,

x
2
− b

2
x > b.

Note that since C = 0, (*) is simply

∫ x

0

f =
(
f(x)

)2
. The zero function is one

solution to this equation on R, and it remains a solution on [a, b] for a < 0 < b.
For x > b, the area bounded by the function f is a triangle with base x − b and
height f(x) = (x− b)/2, hence

∫ b

0
f(x) = 1

2
(x− b)(x− b)/2 = (x− b)2/4; since we

also have
(
f(x)

)2
=
(
(x − b)/2

)2
= (x − b)2/4, f satisfies (*) for any x > b. The

analysis is similar for x < a, except that we need to be careful to keep track of
signs.

3. For each of the following sequences {fn}, determine the pointwise limit of {fn} (if it
exists) on the indicated interval, and establish whether {fn} converges uniformly to
this function.

(i) fn(x) =
ex

x2n
, on (1,∞).

Solution: Note that the numerator does not depend on n. Consequently, for
any x > 1 we have the pointwise limit

f(x) = lim
n→∞

ex

x2n
= ex lim

n→∞

1

x2n
= 0 .

On the other hand, for any given n ∈ N we have

lim
x→∞

fn(x) = lim
x→∞

ex

x2n
=∞ ,

so every fn is unbounded. Since the limit function f ≡ 0 is bounded, the conver-
gence cannot be uniform.

(ii) fn(x) = e−nx
2

, on [−1, 1].

Solution: For all n ∈ N we have fn(0) = e0 = 1. In addition, for all x 6= 0 we
have limn→∞ fn(x) = 0. Therefore, the pointwise limit is

f(x) =

{
1 x = 0,

0 x 6= 0.

Since each fn is continuous but f is not continuous, the convergence is not uni-
form.
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(iii) fn(x) =
e−x

2

n
, on R.

Solution: Since the numerator does not depend on n, we have ∀x ∈ R,

lim
n→∞

fn(x) = lim
n→∞

e−x
2

n
= e−x

2

lim
n→∞

1

n
= 0 .

Therefore the pointwise limit is f ≡ 0. In fact, fn → f uniformly. Note that
0 < e−x

2 ≤ 1 for all x ∈ R, and hence 0 < fn(x) ≤ 1
n

for all x ∈ R. Given ε > 0,
choose N ∈ N such that N > 1/ε. Then for all n ≥ N , we have 1

n
< ε and

hence 0 < fn(x) < ε for all x ∈ R, i.e., fn(x) converges uniformly to the zero
function.

4. Suppose that {fn} is a sequence of nonnegative bounded functions on A ⊆ R, and
let Mn = sup fn. If

∑∞
n=1 fn converges uniformly on A, does it follow that

∑∞
n=1Mn

converges (a converse to the Weierstrass M -test)?

Solution: No, it does not follow. Consider A = [1,∞) and define

fn(x) =

{
1
n

n ≤ x < n+ 1

0, otherwise.

Then each fn is non-negative and bounded and the series converges uniformly to

f(x) =
∞∑
n=1

fn(x) =
1

bxc
.

But Mn = sup fn = 1
n

and
∑∞

n=1Mn diverges. Another example, which is perhaps
slightly simpler, is to define fn(n) = 1

n
and fn(x) = 0 for all x 6= n.

5. Prove that the series
∞∑
n=1

x

n(1 + nx2)

converges uniformly on R.

Solution: Let fn(x) = x
n(1+nx2)

and note that

f ′n(x) =
1− nx2

n(1 + nx2)2
.

Moreover, limx→−∞ fn(x) = limx→∞ fn(x) = 0. Hence fn has exactly two critical
points, where 1− nx2 = 0, i.e., x = ± 1√

n
. Thus

− 1

2n3/2
= fn(− 1√

n
) ≤ fn(x) ≤ fn(

1√
n

) =
1

2n3/2
, ∀x ∈ R.

Consequently, if we let Mn = 1
2n3/2 then the series

∑∞
n=1 fn(x) converges by the Weier-

strass M -test.
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