Mathematics 3A03 Real Analysis I
 2017 ASSIGNMENT 6

This assignment is due in the appropriate locker on Monday 4 Dec 2017 at 2:25pm.

1. Use the Fundamental Theorem of Calculus and Darboux's Theorem to give another proof of the Intermediate Value Theorem.
2. An integral equation is an equation involving integrals of an unknown function. A solution of an integral equation is a function f that satisfies the equation. Consider the integral equation

$$
\begin{equation*}
\int_{0}^{x} f=(f(x))^{2}+C \tag{}
\end{equation*}
$$

where $C \in \mathbb{R}$ is a constant.
(a) For $C \neq 0$, find all continuous solutions of $\left(^{*}\right)$ for which f has at most one zero.
(b) For $C \neq 0$, find a solution of $(*)$ that is 0 on an interval $(-\infty, b]$ with $b<0$, but non-zero for $x>b$.
(c) For $C=0$, and any interval $[a, b]$ with $a<0<b$, find a solution of $\left(^{*}\right)$ that is 0 on $[a, b]$, but non-zero elsewhere.
3. For each of the following sequences $\left\{f_{n}\right\}$, determine the pointwise limit of $\left\{f_{n}\right\}$ (if it exists) on the indicated interval, and establish whether $\left\{f_{n}\right\}$ converges uniformly to this function.
(i) $f_{n}(x)=\frac{e^{x}}{x^{2 n}}, \quad$ on $(1, \infty)$.
(ii) $f_{n}(x)=e^{-n x^{2}}, \quad$ on $[-1,1]$.
(iii) $f_{n}(x)=\frac{e^{-x^{2}}}{n}, \quad$ on \mathbb{R}.
4. Suppose that $\left\{f_{n}\right\}$ is a sequence of nonnegative bounded functions on $A \subseteq \mathbb{R}$, and let $M_{n}=\sup f_{n}$. If $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on A, does it follow that $\sum_{n=1}^{\infty} M_{n}$ converges (a converse to the Weierstrass M-test)?
5. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{x}{n\left(1+n x^{2}\right)}
$$

converges uniformly on \mathbb{R}.

