
Mathematics 3A03 Real Analysis I

2017 ASSIGNMENT 5 (Solutions)

This assignment was due in the appropriate locker on Monday 20 Nov 2017 at
2:25pm.

1. Suppose A ⊆ R is open and f : A → R is a function. For U ⊆ R, define the inverse
image under f to be the set

f−1(U) = {x ∈ A | f(x) ∈ U} .

Show that f is continuous if and only if f−1(U) is open for every open set U ⊂ R.

Proof: First assume that f is continuous and let U ⊆ R be open. To show that f−1(U)
is open, it suffices to show that all points in f−1(U) are interior points. For this, pick
x ∈ f−1(U) ⊆ A. This implies f(x) ∈ U . Since U is open, there is some ε > 0 so that
(f(x)− ε, f(x)+ ε) ⊆ U . We have assumed that f is continuous, so there is some δ > 0
so that if x′ ∈ A satisfies 0 < |x− x′| < δ, then |f(x)− f(x′)| < ε. This implies

(x− δ, x+ δ) ∩ A ⊂ f−1(U). (1)

Since A is open and x ∈ A, the point x is an interior point of A. By shrinking δ, if
necessary, we may therefore assume (x−δ, x+δ) ⊆ A. Then (1) implies (x−δ, x+δ) ⊆
f−1(U), which shows x is an interior point of f−1(U).

Conversely, assume that f−1(U) is open for every open set U . To prove that f is
continuous, pick a point x ∈ A and let ε > 0. The set U = (f(x) − ε, f(x) + ε)
is open, so f−1(U) is open, by our assumption. The set f−1(U) contains x (since
f(x) ∈ U = f(f−1(U))), so x is an interior point of f−1(U). In particular, there is
some δ > 0 so that

(x− δ, x+ δ) ⊆ f−1(U).

Since U = (f(x) − ε, f(x) + ε), this implies that if x′ ∈ A satisfies 0 < |x − x′| < δ,
then |f(x)− f(x′)| < ε.

2. Suppose D ⊆ R is a compact set and f : R→ R is continuous. Define the image of D
under f to be

f(D) = {f(x) : x ∈ D} .

(a) Show that f(D) satisfies the Bolzano-Weierstrass property. Show this by directly
verifying the Bolzano-Weierstrass property (e.g., you can’t use part (b)).

(b) Show that f(D) satisfies the Heine-Borel property. Show this by directly verifying
the Heine-Borel property (e.g., you can’t use part (a)). Hint: Use Problem 1.
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Proof of (a): Let {yn} be a sequence in f(D). From the definition of f(D), we see
that, for each n, we can write yn = f(xn) for some xn ∈ D. The set D satisfies the
Bolzano-Weierstrass property, so a subsequence {xnk

} converges to a point x∞ ∈ D.
Since f is continuous, we have

lim
k→∞

ynk
= lim

k→∞
f(xnk

) = f(x∞) ∈ f(D),

which shows that the subsequence {ynk
} converges in f(D).

Proof of (b): Let {Uα} be an open cover of f(D). Since f is continuous, it follows from
Problem 1 that f−1(Uα) is open for each α. Moreover, the collection {f−1(Uα)} is an
open cover of D: If x ∈ D, then f(x) ∈ f(D) and so f(x) ∈ Uα for some α, which
implies that x ∈ f−1(Uα). Since D is compact, the open cover {f−1(Uα)} has a finite
subcover, which we can denote by{

f−1(Uα1), . . . , f
−1(UαN

)
}
.

We will show that {Uα1 , . . . , UαN
} covers f(D). For this, let y ∈ f(D). Then y = f(x)

for some x ∈ D, so x ∈ f−1(Uαk
) for some 1 ≤ k ≤ N . Then y = f(x) ∈ Uαk

.

3. (a) Give an example of a function that is bounded, but does not achieve a maximum.

(b) Consider the function f : R\ {0} → R defined by f(x) = 1/x. Show that this
function is continuous, but does not satisfy the Intermediate Value Property. Why
does this not contradict the Intermediate Value Theorem?

(c) Suppose you are driving from Hamilton to Toronto, a total distance of 61 km. The
legal speed limit is 100 km per hour everywhere. If it takes you 28 minutes to
make your trip, have you broken the law? Justify your answer.

(a) The function f : (0, 1)→ R defined by f(x) = x is bounded, but does not achieve
a maximum. Indeed, it is bounded by 1, and sup(f(0, 1)) = 1 so the maximum would
have to be 1 if it existed. However, for all x ∈ (0, 1), f(x) 6= 1.

(b) We saw in class that this function is continuous on its domain D = R\ {0} (it is
a rational function). To see that it does not satisfy the Intermediate Value Property,
note that f(1) = 1 and f(−1) = −1, but there is no x ∈ (−1, 1) ∩ D with f(x) = 0.
This does not contradict the Intermediate Value Theorem because the theorem only
applies to functions defined on an interval, and the domain of f is not an interval.

(c) It follows from the Mean Value Theorem that you broke the law. To see this, let
d(t) denote your distance in kilometers from Hamilton after t minutes. View this as a
function d : [0, 28]→ R, so

d(0) = 0, d(28) = 61.

It is physically reasonable to assume that d is continuous (people generally cannot
teleport), and differentiable on (0, 28) (you would have be a pretty crazy driver to not

Page 2 of 6



have a well-defined speed at each point). Then the Mean Value Theorem tells us that
there is some point c ∈ (0, 28) so that

d′(c) =
d(28)− d(0)

28− 0
=

61

28
.

That is, at time c your speed is 61/28 kilometers per minute, which is approximately
130.71 kilometers per hour. That is, you were speeding at time c.

4. Suppose f : (a, b) → R is differentiable and is such that f ′(x) 6= 0 for all x ∈ (a, b).
Show that f is monotone.

Proof: Pick x0 ∈ (a, b). Since f ′(x0) 6= 0, we find the following cases

Case 1: f ′(x0) > 0

Case 2: f ′(x0) < 0

We will show that Case 1 implies that f is strictly increasing; the proof that Case 2
implies that f is strictly decreasing is similar (or just replace f with −f to reduce Case
2 to Case 1).

Assuming Case 1, we will first show that f ′(x) > 0 for all x ∈ (a, b). To see this,
suppose not. Then there is some x ∈ (a, b) with f ′(x) ≤ 0. Note that 0 is between
f ′(x) and f ′(x0). Darboux’s theorem tells us that f ′ satisfies the Intermediate Value
Property, so there is some c between x and x0 with f ′(c) = 0, which is a contradiction.

Now we prove that f is increasing. For this, fix x1, x2 ∈ (a, b) with x1 < x2. Since f is
differentiable on (a, b) it is continuous on [x1, x2] ⊂ (a, b) and differentiable on (x1, x2).
By the Mean Value Theorem, there is some c ∈ (x1, x2) so that

f(x2)− f(x1)

x2 − x1
= f ′(c).

We know that f ′(c) > 0, and we know that x2 − x1 > 0, so this implies that f(x2) −
f(x1) > 0. That is, f(x1) < f(x2), which is what we wanted to show.

5. Suppose that f : R → R is a polynomial of degree n ∈ N. This means that there are
a0, . . . , an ∈ R so that an 6= 0 and

f(x) = anx
n + an−1x

n−1 + . . .+ a1x
1 + a0,∀x ∈ R.

(a) Show that if n is odd, then f has a zero.

(b) Show that if n is even, then f has a maximum or a minimum.

Proof of (a): Since an 6= 0, we have either an > 0 or an < 0. We will assume that
an > 0; the other case is similar (or replace f with −f to reduce the an < 0 case to
the an > 0 case). Then an > 0 and the assumption that n is odd imply that

lim
x→+∞

f(x) = +∞, lim
x→−∞

f(x) = −∞
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Hence, there is some R > 0 so that f(R) > 0 and f(−R) < 0. By the Intermediate
Value Theorem, there is some point c ∈ [−R,R] with f(c) = 0.

Proof of (b): We will assume that an > 0, and we will prove that f has a minimum;
the case where an < 0 is similar (f has a maximum in this case). The assumptions
that an > 0 and that n is even imply

lim
x→+∞

f(x) = +∞, lim
x→−∞

f(x) = +∞.

This implies there is some R > 0 so that if |x| ≥ R, then f(x) ≥ f(0). Consider the
restriction of the function f to [−R,R]. This is a compact domain, so the Extreme
Value Theorem implies that there is some c ∈ (−R,R) so that

f(c) ≤ f(x)

for all x ∈ [−R,R]. If x /∈ [−R,R], then the defining property of R implies that
f(x) ≥ f(0), and since 0 ∈ [−R,R], this implies

f(c) ≤ f(0) ≤ f(x).

In summary, f(c) ≤ f(x) for all x ∈ R, so f attains a minimum at c.

6. (a) Suppose f : [a, b]→ R is piecewise continuous. Prove that f is integrable on [a, b]
if and only if for all ε > 0 there is a partition P of [a, b] so that

U(f, P )− L(f, P ) < ε.

(b) Suppose f(x) = dxe for all x ∈ R. Using the definition of the integral (or part
(a)), prove that ∫ 2

0

f = 3.

Proof of (a): Note that every piecewise continuous function is bounded; in particular,
this means that L(f, P ) and U(f, P ) are well-defined for every partition P of [a, b].

First assume that f is integrable on [a, b], and let ε > 0. Then there are partitions
Pu, P` of [a, b] so that

U(f, Pu)−
∫ b

a

f < ε/2,

∫ b

a

f − L(f, P`) < ε/2.

(Recall that, since f is integrable, we have
∫ b
a
f = inf {U(f, P ) : P} and

∫ b
a
f =

sup {L(f, P ) : P} where the sets are indexed over all partitions P of [a, b].) Then the
union Pu∪P` is another partition of [a, b] that contains Pu and P`. We showed in class
that this implies

U(f, Pu) ≥ U(f, Pu ∪ P`) ≥ L(f, Pu ∪ P`) ≥ L(f, P`).
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Then combining these inequalities with the defining inequalities for Pu, P` gives

U(f, Pu ∪ P`)− L(f, Pu ∪ P`) ≤ U(f, Pu)− L(f, P`)

= U(f, Pu)−
∫ b
a
f +

∫ b
a
f − L(f, P`)

< ε/2 + ε/2
= ε,

as desired.

Conversely, assume that, f is not integrable. Then

inf {U(f, P ) : P} > sup {L(f, P ) : P}

where the indexing is over all partitions P of [a, b]. Set

Ui = inf {U(f, P ) : P} , Ls = sup {L(f, P ) : P}

and
ε = Ui − Ls

so ε > 0. Then if P is any partition of [a, b], we have

U(f, P )− Ui ≥ 0, Ls − L(f, P ) ≥ 0

so
U(f, P )− L(f, P ) ≥ Ui − Ls = ε.

Proof of (b): We need to show that f is integrable and that its integral over [0, 2]
equals 3. We will show that, for each ε > 0, there is a partition P of [0, 2] so that

U(f, P ) = 3, L(f, P ) = 3− ε. (2)

Since f is piecewise continuous, it will follow immediately from Part (a) that f is
integrable. That the value of the integral is 3 will follow from the inequalities

3 = U(f, P ) ≥
∫ 2

0

f ≥ L(f, P ) = 3− ε,

and the fact that ε > 0 was arbitrarily chosen.

To prove (2), fix ε > 0 and consider the partition P = {t0, t1, t2, t3, t4} where

t0 = 0, t1 = ε/2, t2 = 1, t3 = 1 + ε/2, t4 = 2.

Define Mk and mk to be the supremum and infimum, respectively, of f on [tk−1, tk].
Then

U(f, P ) = M1(t1 − t0) +M2(t2 − t1) +M3(t3 − t2) +M4(t4 − t3)
= 1(ε/2) + 1(1− ε/2) + 2(ε/2) + 2(1− ε/2)
= 1 + 2 = 3
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Similarly,

L(f, P ) = m1(t1 − t0) +m2(t2 − t1) +m3(t3 − t2) +m4(t4 − t3)
= 0(ε/2) + 1(1− ε/2) + 1(ε/2) + 2(1− ε/2)
= 1− ε/2 + ε/2 + 2− ε
= 3− ε.
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