Mathematics 3A03 Real Analysis I
2017 ASSIGNMENT 3 (Solutions)

This assignment was due in the appropriate locker on Friday 20 Oct 2017 at
4:25pm.

1. Suppose {a,} and {b,} are sequences with 0 < a, < b, for all n. Consider the

sequences
n n
Sp = E ag, t, = E bk
k=1 k=1

of partial sums. Show that if {t,,} converges, then {s,} converges. Hint: Use the
Monotone Convergence Theorem.

Proof: By the Monotone Convergence Theorem, to prove that {s,} converges, it suffices
to show that this sequence is monotone and bounded. To see that it is monotone, fix
n > 1. By assumption, we have a,,; > 0, and so

n+1

n n
Sp = E ap < Qpy1 + E ap = E () = Sp41-
k=1 k=1 k=1

This shows that {s,} is non-decreasing, and hence monotone.

To see that {s,} is bounded, we use the assumption that {¢,} converges. This implies
that {¢,} is bounded above, so there is some M with ¢, < M for all n (in fact, we can
simply take M to be the limit of {¢,}, since {t,} is non-decreasing). Since a; < by for

all £ we have . .
Snzzak < Zbk:tn
k=1 k=1

for all n. Combining this with ¢,, < M, it follows that s,, < M for all n. On the other
hand, a,, > 0 implies s,, > 0. This implies |s,| < M, and so {s,} is bounded. O

2. (a) Let r € R with 7 # 1. Show that Y ¢_ 7% = 11__’": for all £ > 1. Conclude that if
0 <r <1, then Zf;_:trk < 113 for all ¢ > 1.
(b) Suppose {z,} is a sequence satisfying |z, — z,41| < 27" for all n. Show that {z,}

converges. Hint: Use the Cauchy criterion. Show that |x, ¢ — x,| < 27" Zi;% 2k
and then simplify this using (a).

Proof of (a): We prove the identity Zi_:% rk = 1117:8 using induction. The base case is

—_

1
11—t

rF=r0=1= .
1=

0

=
Il
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For the inductive step, assume Zf;;% — 11__’": for some ¢ > 1. Then
1—rt rf(1—7r) 1—rf 1—7pt!

¢
k _ 0 ko 0 _ _
ZT - " T+1—r 1—r +1—r 1—r

k=0 k=0

This finishes the inductive step, and the proof of the identity.

Now we prove the estimate Zi;t rk < ﬁ for 0 < r < 1. The inequality r > 0 implies
r® >0, and so 1 —r’ < 1. Since r < 1, we have 1 —r > 0 and so dividing both sides

of 1 —rt < 1by1—r gives Lr’ < %T Using the identity proved in the previous

1—r — 1
paragraph, we conclude Ei;t rk < ﬁ for all £ > 1. n

Proof of (b): By the Cauchy criterion, it suffices to prove that the sequence {z,}
is Cauchy. To prove this, let ¢ > 0. Take N to be a natural number greater than
log,(2/€); in particular, this implies

2-27V < (1)

Suppose n,m > N. If n = m, then we have |z, — z,,| = 0 < €, and so we are done.
We may therefore assume n < m (the case n > m is treated in exactly the same way).
Then we can write m = n + £ for some ¢ > 1. By the triangle inequality, we have

|T — T = |Tn — Ty

|xn£ — Tp+1 + Ln+1 — Tnp+2 + Tpt2 — - .. + Tpyo—1 — In-i—@‘
-1

> ko [Tntk — Tngrta]-

IA I

Using the assumption that |z; — x;41] < 277, we can continue this to get

-1 -1 ]
|2 — | < ;02“ = 2”;2’“ <2 =2027
where we used (a) in the last line. Using n > N and (1), we therefore have
T — | <2-27"<2.27V <,
[l

. (a) Suppose A and B are countable sets. Show that the union A U B is countable.
Hint: First consider the case where A and B are disjoint (AN B = @).

(b) Suppose S is a countable set that is infinite. Show that for each n > 2, the n-fold
Cartesian product S™ is countable.

(c) Consider the set
P(N) :={f | f is a function of the form f:N — {0,1}}

consisting of all functions from N to {0,1}. Prove that P(N) is uncountable.

Page 2 of 5



Proof of (a): First assume that AN B = @. There are four cases to consider.

Case 1: A and B are both finite. In this case, then AU B is finite and hence countable.

Case 2: A and B are both infinite. Then there are bijections f4 : N — A and
fs : N — B. Define a new function f : N — AU B by f(n) = fa(n/2) if n is even,
and f(n) = f((n+1)/2) if n is odd. Note that if n € N is even (resp. odd), then
n/2 € N (resp. (n+ 1)/2 € N); in particular, f is well-defined. We will show that f
is a bijection, from which the countability of A U B will follow. To see f is injective,
assume f(n) = f(m). First assume f(n) € A. Then f(m) € A and f(m) ¢ B, since
AN B = @. It follows from the definition of f that n and m are both even, and

f(n) = fa(n/2) f(m) = fa(m/2).

Since f(n) = f(m), this implies fa(n/2) = fa(m/2). We have assumed that f, is
injective, so n/2 = m/2. This implies n = m. Similarly, if f(n) € B, then n and m
are both odd and the fact that n = m follows from the injectivity of fg.

Now we will show that f is surjective. Let x € AU B. If z € A, then since f, is
surjective, there is some n € N with fa(n) = z. Since f(2n) = fa(n), this implies
f(2n) = x. Similarly, if x € B, then the surjectivity of fp implies there is some n € N
with fg(n) =z, and so f(2n — 1) = fp(n) = .

Case 3: A is finite and B is infinite. Since A is finite, there is a natural number N and
a bijection fa: {1,..., N} — A. Since B is infinite and countable, there is a bijection
/5N — B. Define a new function f : N — AU B by f(n) = fa(n) if 1 <n < N and
f(n)=fe(n—N)ifn>N+1 (if n > N+1, then n — N € N, so this is well-defined).
That f is a bijection follows by an argument similar to the one given in Case 2.

Case 4: A is infinite and B is finite. This is proved as in Case 3.

This finishes the proof in the situation where AN B = &.

Finally, we address the situation where A N B # &. Define B’ = B\ A. Any subset of
a countable set is countable, so B’ is countable. We have AN B" = &, so it follows
from the considerations above that AU B’ is countable. On the other hand, we have

AUB=AUDB
so AU B is countable as well. ]

Proof of (b): Suppose S is countable and infinite. Then there is a bijection f: N — S.
We will use induction to prove that S™ is countable for all n > 2. For the base case,
define a function F' : Nx N — S x S by F(n,m) = (f(n), f(m)). We first claim
that the function F' is a bijection. For injectivity, assume F'(n,m) = F(n',m’). This
implies f(n) = f(n’) and f(m) = f(m'). Since f is injective, it follows that n = n’
and m = m/, and so (n,m) = (n/,m’). Hence F is injective. For surjectivity, let
(z,y) € S x S. Since f is surjective, there are n,m € S with f(n) =z and f(m) = y.
Then F(n,m) = (x,y), so F' is surjective.
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In class we saw that N x N is countable and infinite, so there is some bijection G : N —
N x N. The composition of bijections is another bijection, so FoG: N — S x S is a
bijection. It follows that S x S is countable, so this finishes the proof of the base case.

For the inductive step, assume that S™ is countable for some n > 2. Since S is infinite,
S™ is infinite as well, and so there is some bijection g : N — S§™. Consider the function

F':NxN—> "l =9"%x §

given by F'(n,m) = (g(n), f(m)). The same proof as above shows that F” is a bijection.
Consequently, F” o G : N — S™! is a bijection (where G is as above), and so S™! is
countable. ]

Proof of (¢): We prove this by contradiction. Suppose P(N) is countable. Then there
is a bijection F' : N — P(N). We will show that F' is not surjective, which will be a
contradiction. Note that for each n € N, the value F/(n) is in P(N) and so is a function
from N to {0,1}. Let f, = F(n) for each n. So, for each n € N, f,, : N — {0,1},
i.e., fu(k) is either 0 or 1 for each k € N. In particular, f,(n) is either 0 or 1 for each
n € N. Now define a function f: N — {0,1} as follows:

o) = 1 if fu.(n)
fm) {O if f.(n)

0,
1.

Then f € P(N). The fact that F' is not surjective now follows from the next claim
(remember that F(n) = f,):

Claim: f, # f for alln € N,

We prove this claim by contradiction. Suppose there is some n € N so that f, = f.
Evaluating both sides at n gives f,,(n) = f(n). But we defined f so that f,(n) # f(n),
which is a contradiction. This proves the claim, and therefore finishes the proof of
(c). O

Remark: Part (c) is really just a more abstract presentation of Cantor’s diagonal
argument for the uncountability of R.

. Let E={z€Q]| —Vv2<z<0}.

sequence that converges to a point in E7 If so, prove it. Otherwise, construct a
sequence with no subsequence converging in E.

(f) (Heine-Borel Property) Does every open cover of E have a finite subcover? If so,
prove it. Otherwise, construct an open cover that has no finite subcover.
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Solutions:

(a) The closure of E is [—\/5, O]. So see this, let x € [—\/5, 0]. We need to show that
x is the limit of a sequence of points in £. By the density of the rationals, for each
n € N, there is some rational number z,, so that |z — z,| < 1/n. Since —V2<2<0,
we may further assume that V2 <uz,<0 (since Yn € N, 0 < % < V2 ¢ Q, and
x, € Q). Thus z, € E for all n and lim,, _,, x,, = .

(b) Since the closure of E is not equal to E, it follows that F is not closed.

(c¢) The interior of E is empty. We prove this by contradiction. If the interior of
were not empty, then there would be some z € E and € > 0 so that (z —e,z+¢) C E.
The irrational numbers are dense, so there is some irrational y € (x — e, x + ). Hence
y € F and so y is rational. This contradicts the irrationality of y.

(d) Since the interior of E is not equal to E, it follows that E is not open.

(e) No, there are sequences in E that have no subsequences converging in E. To see
this, consider the sequence defined by z, = —1/n. Then x, € E for all n. On the
other hand, {x,} converges to 0, and so every subsequence of {x,} converges to 0 as
well. Since 0 ¢ F, this finishes the argument.

(f) No, there are open covers of E that have no finite subcovers. For example, consider
the collection

U = {(—V2+1,0),(—V2+1/2,—V2+1),(—V2+1/3,-v2+1/2),
(—vV2+1/4,-V2+1/3),(—V2+1/5,—V2+1/4) ...}

The union of all the sets in U/ is
* 1 1
U (—\/§+—,—\/§+—) U (=vV2+1,0),
et n+1 n

which covers everything in the interval (—\/5, 0) except for the irrational numbers of
the form —v/2 + %; in particular, U is a cover of K. Distinct sets in U have disjoint
intersection, yet every set in U contains a point in F, so any subcover (i.e., any cover
of E consisting of intervals in i) is necessarily all of . Since U is infinite, this implies
every subcover of U/ is infinite.
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