
Mathematics 3A03 Real Analysis I

2017 ASSIGNMENT 3 (Solutions)

This assignment was due in the appropriate locker on Friday 20 Oct 2017 at
4:25pm.

1. Suppose {an} and {bn} are sequences with 0 ≤ an ≤ bn for all n. Consider the
sequences

sn =
n∑

k=1

ak, tn =
n∑

k=1

bk

of partial sums. Show that if {tn} converges, then {sn} converges. Hint: Use the
Monotone Convergence Theorem.

Proof: By the Monotone Convergence Theorem, to prove that {sn} converges, it suffices
to show that this sequence is monotone and bounded. To see that it is monotone, fix
n ≥ 1. By assumption, we have an+1 ≥ 0, and so

sn =
n∑

k=1

ak ≤ an+1 +
n∑

k=1

ak =
n+1∑
k=1

ak = sn+1.

This shows that {sn} is non-decreasing, and hence monotone.

To see that {sn} is bounded, we use the assumption that {tn} converges. This implies
that {tn} is bounded above, so there is some M with tn ≤M for all n (in fact, we can
simply take M to be the limit of {tn}, since {tn} is non-decreasing). Since ak ≤ bk for
all k we have

sn =
n∑

k=1

ak ≤
n∑

k=1

bk = tn

for all n. Combining this with tn ≤M , it follows that sn ≤M for all n. On the other
hand, an ≥ 0 implies sn ≥ 0. This implies |sn| ≤M , and so {sn} is bounded.

2. (a) Let r ∈ R with r 6= 1. Show that
∑`−1

k=0 r
k = 1−r`

1−r for all ` ≥ 1. Conclude that if

0 ≤ r < 1, then
∑`−1

k=0 r
k ≤ 1

1−r for all ` ≥ 1.

(b) Suppose {xn} is a sequence satisfying |xn− xn+1| < 2−n for all n. Show that {xn}
converges. Hint: Use the Cauchy criterion. Show that |xn+`− xn| ≤ 2−n

∑`−1
k=0 2−k

and then simplify this using (a).

Proof of (a): We prove the identity
∑`−1

k=0 r
k = 1−r`

1−r using induction. The base case is

1−1∑
k=0

rk = r0 = 1 =
1− r1

1− r
.
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For the inductive step, assume
∑`−1

k=0 r
k = 1−r`

1−r for some ` ≥ 1. Then

∑̀
k=0

rk = r` +
`−1∑
k=0

rk = r` +
1− r`

1− r
=
r`(1− r)

1− r
+

1− r`

1− r
=

1− r`+1

1− r
.

This finishes the inductive step, and the proof of the identity.

Now we prove the estimate
∑`−1

k=0 r
k ≤ 1

1−r for 0 ≤ r < 1. The inequality r ≥ 0 implies

r` ≥ 0, and so 1 − r` ≤ 1. Since r < 1, we have 1 − r > 0 and so dividing both sides
of 1 − r` ≤ 1 by 1 − r gives 1−r`

1−r ≤
1

1−r . Using the identity proved in the previous

paragraph, we conclude
∑`−1

k=0 r
k ≤ 1

1−r for all ` ≥ 1.

Proof of (b): By the Cauchy criterion, it suffices to prove that the sequence {xn}
is Cauchy. To prove this, let ε > 0. Take N to be a natural number greater than
log2(2/ε); in particular, this implies

2 · 2−N < ε. (1)

Suppose n,m ≥ N . If n = m, then we have |xn − xm| = 0 < ε, and so we are done.
We may therefore assume n < m (the case n > m is treated in exactly the same way).
Then we can write m = n+ ` for some ` ≥ 1. By the triangle inequality, we have

|xn − xm| = |xn − xn+`|
= |xn − xn+1 + xn+1 − xn+2 + xn+2 − . . .+ xn+`−1 − xn+`|
≤

∑`−1
k=0 |xn+k − xn+k+1|.

Using the assumption that |xj − xj+1| < 2−j, we can continue this to get

|xn − xm| <
`−1∑
k=0

2−n−k = 2−n
`−1∑
k=0

2−k ≤ 2−n
1

1− 2−1
= 2 · 2−n,

where we used (a) in the last line. Using n ≥ N and (1), we therefore have

|xn − xm| ≤ 2 · 2−n ≤ 2 · 2−N < ε.

3. (a) Suppose A and B are countable sets. Show that the union A ∪ B is countable.
Hint: First consider the case where A and B are disjoint (A ∩B = ∅).

(b) Suppose S is a countable set that is infinite. Show that for each n ≥ 2, the n-fold
Cartesian product Sn is countable.

(c) Consider the set

P (N) := {f | f is a function of the form f : N→ {0, 1}}

consisting of all functions from N to {0, 1}. Prove that P (N) is uncountable.
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Proof of (a): First assume that A ∩B = ∅. There are four cases to consider.

Case 1: A and B are both finite. In this case, then A∪B is finite and hence countable.

Case 2: A and B are both infinite. Then there are bijections fA : N → A and
fB : N → B. Define a new function f : N → A ∪ B by f(n) = fA(n/2) if n is even,
and f(n) = fB((n + 1)/2) if n is odd. Note that if n ∈ N is even (resp. odd), then
n/2 ∈ N (resp. (n + 1)/2 ∈ N); in particular, f is well-defined. We will show that f
is a bijection, from which the countability of A ∪ B will follow. To see f is injective,
assume f(n) = f(m). First assume f(n) ∈ A. Then f(m) ∈ A and f(m) /∈ B, since
A ∩B = ∅. It follows from the definition of f that n and m are both even, and

f(n) = fA(n/2) f(m) = fA(m/2).

Since f(n) = f(m), this implies fA(n/2) = fA(m/2). We have assumed that fA is
injective, so n/2 = m/2. This implies n = m. Similarly, if f(n) ∈ B, then n and m
are both odd and the fact that n = m follows from the injectivity of fB.

Now we will show that f is surjective. Let x ∈ A ∪ B. If x ∈ A, then since fA is
surjective, there is some n ∈ N with fA(n) = x. Since f(2n) = fA(n), this implies
f(2n) = x. Similarly, if x ∈ B, then the surjectivity of fB implies there is some n ∈ N
with fB(n) = x, and so f(2n− 1) = fB(n) = x.

Case 3: A is finite and B is infinite. Since A is finite, there is a natural number N and
a bijection fA : {1, . . . , N} → A. Since B is infinite and countable, there is a bijection
fB : N→ B. Define a new function f : N→ A ∪B by f(n) = fA(n) if 1 ≤ n ≤ N and
f(n) = fB(n−N) if n ≥ N + 1 (if n ≥ N + 1, then n−N ∈ N, so this is well-defined).
That f is a bijection follows by an argument similar to the one given in Case 2.

Case 4: A is infinite and B is finite. This is proved as in Case 3.

This finishes the proof in the situation where A ∩B = ∅.

Finally, we address the situation where A ∩ B 6= ∅. Define B′ = B\A. Any subset of
a countable set is countable, so B′ is countable. We have A ∩ B′ = ∅, so it follows
from the considerations above that A ∪B′ is countable. On the other hand, we have

A ∪B = A ∪B′

so A ∪B is countable as well.

Proof of (b): Suppose S is countable and infinite. Then there is a bijection f : N→ S.
We will use induction to prove that Sn is countable for all n ≥ 2. For the base case,
define a function F : N × N → S × S by F (n,m) = (f(n), f(m)). We first claim
that the function F is a bijection. For injectivity, assume F (n,m) = F (n′,m′). This
implies f(n) = f(n′) and f(m) = f(m′). Since f is injective, it follows that n = n′

and m = m′, and so (n,m) = (n′,m′). Hence F is injective. For surjectivity, let
(x, y) ∈ S × S. Since f is surjective, there are n,m ∈ S with f(n) = x and f(m) = y.
Then F (n,m) = (x, y), so F is surjective.
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In class we saw that N×N is countable and infinite, so there is some bijection G : N→
N× N. The composition of bijections is another bijection, so F ◦ G : N → S × S is a
bijection. It follows that S×S is countable, so this finishes the proof of the base case.

For the inductive step, assume that Sn is countable for some n ≥ 2. Since S is infinite,
Sn is infinite as well, and so there is some bijection g : N→ Sn. Consider the function

F ′ : N× N→ Sn+1 = Sn × S

given by F ′(n,m) = (g(n), f(m)). The same proof as above shows that F ′ is a bijection.
Consequently, F ′ ◦ G : N → Sn+1 is a bijection (where G is as above), and so Sn+1 is
countable.

Proof of (c): We prove this by contradiction. Suppose P (N) is countable. Then there
is a bijection F : N → P (N). We will show that F is not surjective, which will be a
contradiction. Note that for each n ∈ N, the value F (n) is in P (N) and so is a function
from N to {0, 1}. Let fn = F (n) for each n. So, for each n ∈ N, fn : N → {0, 1},
i.e., fn(k) is either 0 or 1 for each k ∈ N. In particular, fn(n) is either 0 or 1 for each
n ∈ N. Now define a function f : N→ {0, 1} as follows:

f(n) =

{
1 if fn(n) = 0,

0 if fn(n) = 1.

Then f ∈ P (N). The fact that F is not surjective now follows from the next claim
(remember that F (n) = fn):

Claim: fn 6= f for all n ∈ N.
We prove this claim by contradiction. Suppose there is some n ∈ N so that fn = f .
Evaluating both sides at n gives fn(n) = f(n). But we defined f so that fn(n) 6= f(n),
which is a contradiction. This proves the claim, and therefore finishes the proof of
(c).

Remark: Part (c) is really just a more abstract presentation of Cantor’s diagonal
argument for the uncountability of R.

4. Let E =
{
x ∈ Q | −

√
2 < x < 0

}
.

(a) Find the closure of E in R.

(b) Is E closed?

(c) Find the interior of E in R.

(d) Is E open?

(e) (Bolzano-Weierstrass Property) Does every sequence of points in E have a sub-
sequence that converges to a point in E? If so, prove it. Otherwise, construct a
sequence with no subsequence converging in E.

(f) (Heine-Borel Property) Does every open cover of E have a finite subcover? If so,
prove it. Otherwise, construct an open cover that has no finite subcover.
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Solutions:

(a) The closure of E is
[
−
√

2, 0
]
. So see this, let x ∈

[
−
√

2, 0
]
. We need to show that

x is the limit of a sequence of points in E. By the density of the rationals, for each
n ∈ N, there is some rational number xn so that |x− xn| < 1/n. Since −

√
2 ≤ x ≤ 0,

we may further assume that −
√

2 < xn < 0 (since ∀n ∈ N, 0 < 1
n
<
√

2 /∈ Q, and
xn ∈ Q). Thus xn ∈ E for all n and limn→∞ xn = x.

(b) Since the closure of E is not equal to E, it follows that E is not closed.

(c) The interior of E is empty. We prove this by contradiction. If the interior of E
were not empty, then there would be some x ∈ E and ε > 0 so that (x− ε, x+ ε) ⊂ E.
The irrational numbers are dense, so there is some irrational y ∈ (x− ε, x+ ε). Hence
y ∈ E and so y is rational. This contradicts the irrationality of y.

(d) Since the interior of E is not equal to E, it follows that E is not open.

(e) No, there are sequences in E that have no subsequences converging in E. To see
this, consider the sequence defined by xn = −1/n. Then xn ∈ E for all n. On the
other hand, {xn} converges to 0, and so every subsequence of {xn} converges to 0 as
well. Since 0 /∈ E, this finishes the argument.

(f) No, there are open covers of E that have no finite subcovers. For example, consider
the collection

U =
{

(−
√

2 + 1, 0), (−
√

2 + 1/2,−
√

2 + 1), (−
√

2 + 1/3,−
√

2 + 1/2),

(−
√

2 + 1/4,−
√

2 + 1/3), (−
√

2 + 1/5,−
√

2 + 1/4) . . .
}

The union of all the sets in U is

∞⋃
n=1

(
−
√

2 +
1

n+ 1
,−
√

2 +
1

n

)
∪ (−

√
2 + 1, 0) ,

which covers everything in the interval (−
√

2, 0) except for the irrational numbers of
the form −

√
2 + 1

n
; in particular, U is a cover of E. Distinct sets in U have disjoint

intersection, yet every set in U contains a point in E, so any subcover (i.e., any cover
of E consisting of intervals in U) is necessarily all of U . Since U is infinite, this implies
every subcover of U is infinite.
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