Mathematics 3A03 Real Analysis I 2017 ASSIGNMENT 3 (Solutions)

This assignment was due in the appropriate locker on Friday 20 Oct 2017 at $4: 25 \mathrm{pm}$.

1. Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences with $0 \leq a_{n} \leq b_{n}$ for all n. Consider the sequences

$$
s_{n}=\sum_{k=1}^{n} a_{k}, \quad t_{n}=\sum_{k=1}^{n} b_{k}
$$

of partial sums. Show that if $\left\{t_{n}\right\}$ converges, then $\left\{s_{n}\right\}$ converges. Hint: Use the Monotone Convergence Theorem.

Proof: By the Monotone Convergence Theorem, to prove that $\left\{s_{n}\right\}$ converges, it suffices to show that this sequence is monotone and bounded. To see that it is monotone, fix $n \geq 1$. By assumption, we have $a_{n+1} \geq 0$, and so

$$
s_{n}=\sum_{k=1}^{n} a_{k} \leq a_{n+1}+\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n+1} a_{k}=s_{n+1} .
$$

This shows that $\left\{s_{n}\right\}$ is non-decreasing, and hence monotone.
To see that $\left\{s_{n}\right\}$ is bounded, we use the assumption that $\left\{t_{n}\right\}$ converges. This implies that $\left\{t_{n}\right\}$ is bounded above, so there is some M with $t_{n} \leq M$ for all n (in fact, we can simply take M to be the limit of $\left\{t_{n}\right\}$, since $\left\{t_{n}\right\}$ is non-decreasing). Since $a_{k} \leq b_{k}$ for all k we have

$$
s_{n}=\sum_{k=1}^{n} a_{k} \leq \sum_{k=1}^{n} b_{k}=t_{n}
$$

for all n. Combining this with $t_{n} \leq M$, it follows that $s_{n} \leq M$ for all n. On the other hand, $a_{n} \geq 0$ implies $s_{n} \geq 0$. This implies $\left|s_{n}\right| \leq M$, and so $\left\{s_{n}\right\}$ is bounded.
2. (a) Let $r \in \mathbb{R}$ with $r \neq 1$. Show that $\sum_{k=0}^{\ell-1} r^{k}=\frac{1-r^{\ell}}{1-r}$ for all $\ell \geq 1$. Conclude that if $0 \leq r<1$, then $\sum_{k=0}^{\ell-1} r^{k} \leq \frac{1}{1-r}$ for all $\ell \geq 1$.
(b) Suppose $\left\{x_{n}\right\}$ is a sequence satisfying $\left|x_{n}-x_{n+1}\right|<2^{-n}$ for all n. Show that $\left\{x_{n}\right\}$ converges. Hint: Use the Cauchy criterion. Show that $\left|x_{n+\ell}-x_{n}\right| \leq 2^{-n} \sum_{k=0}^{\ell-1} 2^{-k}$ and then simplify this using (a).
Proof of (a): We prove the identity $\sum_{k=0}^{\ell-1} r^{k}=\frac{1-r^{\ell}}{1-r}$ using induction. The base case is

$$
\sum_{k=0}^{1-1} r^{k}=r^{0}=1=\frac{1-r^{1}}{1-r}
$$

For the inductive step, assume $\sum_{k=0}^{\ell-1} r^{k}=\frac{1-r^{\ell}}{1-r}$ for some $\ell \geq 1$. Then

$$
\sum_{k=0}^{\ell} r^{k}=r^{\ell}+\sum_{k=0}^{\ell-1} r^{k}=r^{\ell}+\frac{1-r^{\ell}}{1-r}=\frac{r^{\ell}(1-r)}{1-r}+\frac{1-r^{\ell}}{1-r}=\frac{1-r^{\ell+1}}{1-r}
$$

This finishes the inductive step, and the proof of the identity.
Now we prove the estimate $\sum_{k=0}^{\ell-1} r^{k} \leq \frac{1}{1-r}$ for $0 \leq r<1$. The inequality $r \geq 0$ implies $r^{\ell} \geq 0$, and so $1-r^{\ell} \leq 1$. Since $r<1$, we have $1-r>0$ and so dividing both sides of $1-r^{\ell} \leq 1$ by $1-r$ gives $\frac{1-r^{\ell}}{1-r} \leq \frac{1}{1-r}$. Using the identity proved in the previous paragraph, we conclude $\sum_{k=0}^{\ell-1} r^{k} \leq \frac{1}{1-r}$ for all $\ell \geq 1$.

Proof of (b): By the Cauchy criterion, it suffices to prove that the sequence $\left\{x_{n}\right\}$ is Cauchy. To prove this, let $\epsilon>0$. Take N to be a natural number greater than $\log _{2}(2 / \epsilon)$; in particular, this implies

$$
\begin{equation*}
2 \cdot 2^{-N}<\epsilon \tag{1}
\end{equation*}
$$

Suppose $n, m \geq N$. If $n=m$, then we have $\left|x_{n}-x_{m}\right|=0<\epsilon$, and so we are done. We may therefore assume $n<m$ (the case $n>m$ is treated in exactly the same way). Then we can write $m=n+\ell$ for some $\ell \geq 1$. By the triangle inequality, we have

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & =\left|x_{n}-x_{n+\ell}\right| \\
& =\left|x_{n}-x_{n+1}+x_{n+1}-x_{n+2}+x_{n+2}-\ldots+x_{n+\ell-1}-x_{n+\ell}\right| \\
& \leq \sum_{k=0}^{\ell-1}\left|x_{n+k}-x_{n+k+1}\right|
\end{aligned}
$$

Using the assumption that $\left|x_{j}-x_{j+1}\right|<2^{-j}$, we can continue this to get

$$
\left|x_{n}-x_{m}\right|<\sum_{k=0}^{\ell-1} 2^{-n-k}=2^{-n} \sum_{k=0}^{\ell-1} 2^{-k} \leq 2^{-n} \frac{1}{1-2^{-1}}=2 \cdot 2^{-n}
$$

where we used (a) in the last line. Using $n \geq N$ and (1), we therefore have

$$
\left|x_{n}-x_{m}\right| \leq 2 \cdot 2^{-n} \leq 2 \cdot 2^{-N}<\epsilon
$$

3. (a) Suppose A and B are countable sets. Show that the union $A \cup B$ is countable.

Hint: First consider the case where A and B are disjoint ($A \cap B=\varnothing$).
(b) Suppose S is a countable set that is infinite. Show that for each $n \geq 2$, the n-fold Cartesian product S^{n} is countable.
(c) Consider the set

$$
P(\mathbb{N}):=\{f \mid f \text { is a function of the form } f: \mathbb{N} \rightarrow\{0,1\}\}
$$

consisting of all functions from \mathbb{N} to $\{0,1\}$. Prove that $P(\mathbb{N})$ is uncountable.

Proof of (a): First assume that $A \cap B=\varnothing$. There are four cases to consider.
Case 1: A and B are both finite. In this case, then $A \cup B$ is finite and hence countable.
Case 2: A and B are both infinite. Then there are bijections $f_{A}: \mathbb{N} \rightarrow A$ and $f_{B}: \mathbb{N} \rightarrow B$. Define a new function $f: \mathbb{N} \rightarrow A \cup B$ by $f(n)=f_{A}(n / 2)$ if n is even, and $f(n)=f_{B}((n+1) / 2)$ if n is odd. Note that if $n \in \mathbb{N}$ is even (resp. odd), then $n / 2 \in \mathbb{N}$ (resp. $(n+1) / 2 \in \mathbb{N}$); in particular, f is well-defined. We will show that f is a bijection, from which the countability of $A \cup B$ will follow. To see f is injective, assume $f(n)=f(m)$. First assume $f(n) \in A$. Then $f(m) \in A$ and $f(m) \notin B$, since $A \cap B=\varnothing$. It follows from the definition of f that n and m are both even, and

$$
f(n)=f_{A}(n / 2) \quad f(m)=f_{A}(m / 2)
$$

Since $f(n)=f(m)$, this implies $f_{A}(n / 2)=f_{A}(m / 2)$. We have assumed that f_{A} is injective, so $n / 2=m / 2$. This implies $n=m$. Similarly, if $f(n) \in B$, then n and m are both odd and the fact that $n=m$ follows from the injectivity of f_{B}.
Now we will show that f is surjective. Let $x \in A \cup B$. If $x \in A$, then since f_{A} is surjective, there is some $n \in \mathbb{N}$ with $f_{A}(n)=x$. Since $f(2 n)=f_{A}(n)$, this implies $f(2 n)=x$. Similarly, if $x \in B$, then the surjectivity of f_{B} implies there is some $n \in \mathbb{N}$ with $f_{B}(n)=x$, and so $f(2 n-1)=f_{B}(n)=x$.

Case 3: A is finite and B is infinite. Since A is finite, there is a natural number N and a bijection $f_{A}:\{1, \ldots, N\} \rightarrow A$. Since B is infinite and countable, there is a bijection $f_{B}: \mathbb{N} \rightarrow B$. Define a new function $f: \mathbb{N} \rightarrow A \cup B$ by $f(n)=f_{A}(n)$ if $1 \leq n \leq N$ and $f(n)=f_{B}(n-N)$ if $n \geq N+1$ (if $n \geq N+1$, then $n-N \in \mathbb{N}$, so this is well-defined). That f is a bijection follows by an argument similar to the one given in Case 2.

Case 4: A is infinite and B is finite. This is proved as in Case 3.
This finishes the proof in the situation where $A \cap B=\varnothing$.

Finally, we address the situation where $A \cap B \neq \varnothing$. Define $B^{\prime}=B \backslash A$. Any subset of a countable set is countable, so B^{\prime} is countable. We have $A \cap B^{\prime}=\varnothing$, so it follows from the considerations above that $A \cup B^{\prime}$ is countable. On the other hand, we have

$$
A \cup B=A \cup B^{\prime}
$$

so $A \cup B$ is countable as well.
Proof of (b): Suppose S is countable and infinite. Then there is a bijection $f: \mathbb{N} \rightarrow S$. We will use induction to prove that S^{n} is countable for all $n \geq 2$. For the base case, define a function $F: \mathbb{N} \times \mathbb{N} \rightarrow S \times S$ by $F(n, m)=(f(n), f(m))$. We first claim that the function F is a bijection. For injectivity, assume $F(n, m)=F\left(n^{\prime}, m^{\prime}\right)$. This implies $f(n)=f\left(n^{\prime}\right)$ and $f(m)=f\left(m^{\prime}\right)$. Since f is injective, it follows that $n=n^{\prime}$ and $m=m^{\prime}$, and so $(n, m)=\left(n^{\prime}, m^{\prime}\right)$. Hence F is injective. For surjectivity, let $(x, y) \in S \times S$. Since f is surjective, there are $n, m \in S$ with $f(n)=x$ and $f(m)=y$. Then $F(n, m)=(x, y)$, so F is surjective.

In class we saw that $\mathbb{N} \times \mathbb{N}$ is countable and infinite, so there is some bijection $G: \mathbb{N} \rightarrow$ $\mathbb{N} \times \mathbb{N}$. The composition of bijections is another bijection, so $F \circ G: \mathbb{N} \rightarrow S \times S$ is a bijection. It follows that $S \times S$ is countable, so this finishes the proof of the base case.
For the inductive step, assume that S^{n} is countable for some $n \geq 2$. Since S is infinite, S^{n} is infinite as well, and so there is some bijection $g: \mathbb{N} \rightarrow S^{n}$. Consider the function

$$
F^{\prime}: \mathbb{N} \times \mathbb{N} \rightarrow S^{n+1}=S^{n} \times S
$$

given by $F^{\prime}(n, m)=(g(n), f(m))$. The same proof as above shows that F^{\prime} is a bijection. Consequently, $F^{\prime} \circ G: \mathbb{N} \rightarrow S^{n+1}$ is a bijection (where G is as above), and so S^{n+1} is countable.

Proof of (c): We prove this by contradiction. Suppose $P(\mathbb{N})$ is countable. Then there is a bijection $F: \mathbb{N} \rightarrow P(\mathbb{N})$. We will show that F is not surjective, which will be a contradiction. Note that for each $n \in \mathbb{N}$, the value $F(n)$ is in $P(\mathbb{N})$ and so is a function from \mathbb{N} to $\{0,1\}$. Let $f_{n}=F(n)$ for each n. So, for each $n \in \mathbb{N}, f_{n}: \mathbb{N} \rightarrow\{0,1\}$, i.e., $f_{n}(k)$ is either 0 or 1 for each $k \in \mathbb{N}$. In particular, $f_{n}(n)$ is either 0 or 1 for each $n \in \mathbb{N}$. Now define a function $f: \mathbb{N} \rightarrow\{0,1\}$ as follows:

$$
f(n)= \begin{cases}1 & \text { if } f_{n}(n)=0 \\ 0 & \text { if } f_{n}(n)=1\end{cases}
$$

Then $f \in P(\mathbb{N})$. The fact that F is not surjective now follows from the next claim (remember that $F(n)=f_{n}$):
Claim: $f_{n} \neq f$ for all $n \in \mathbb{N}$.
We prove this claim by contradiction. Suppose there is some $n \in \mathbb{N}$ so that $f_{n}=f$. Evaluating both sides at n gives $f_{n}(n)=f(n)$. But we defined f so that $f_{n}(n) \neq f(n)$, which is a contradiction. This proves the claim, and therefore finishes the proof of (c).

Remark: Part (c) is really just a more abstract presentation of Cantor's diagonal argument for the uncountability of \mathbb{R}.
4. Let $E=\{x \in \mathbb{Q} \mid-\sqrt{2}<x<0\}$.
(a) Find the closure of E in \mathbb{R}.
(b) Is E closed?
(c) Find the interior of E in \mathbb{R}.
(d) Is E open?
(e) (Bolzano-Weierstrass Property) Does every sequence of points in E have a subsequence that converges to a point in E ? If so, prove it. Otherwise, construct a sequence with no subsequence converging in E.
(f) (Heine-Borel Property) Does every open cover of E have a finite subcover? If so, prove it. Otherwise, construct an open cover that has no finite subcover.

Solutions:
(a) The closure of E is $[-\sqrt{2}, 0]$. So see this, let $x \in[-\sqrt{2}, 0]$. We need to show that x is the limit of a sequence of points in E. By the density of the rationals, for each $n \in \mathbb{N}$, there is some rational number x_{n} so that $\left|x-x_{n}\right|<1 / n$. Since $-\sqrt{2} \leq x \leq 0$, we may further assume that $-\sqrt{2}<x_{n}<0$ (since $\forall n \in \mathbb{N}, 0<\frac{1}{n}<\sqrt{2} \notin \mathbb{Q}$, and $x_{n} \in \mathbb{Q}$). Thus $x_{n} \in E$ for all n and $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) Since the closure of E is not equal to E, it follows that E is not closed.
(c) The interior of E is empty. We prove this by contradiction. If the interior of E were not empty, then there would be some $x \in E$ and $\varepsilon>0$ so that $(x-\varepsilon, x+\varepsilon) \subset E$. The irrational numbers are dense, so there is some irrational $y \in(x-\varepsilon, x+\varepsilon)$. Hence $y \in E$ and so y is rational. This contradicts the irrationality of y.
(d) Since the interior of E is not equal to E, it follows that E is not open.
(e) No, there are sequences in E that have no subsequences converging in E. To see this, consider the sequence defined by $x_{n}=-1 / n$. Then $x_{n} \in E$ for all n. On the other hand, $\left\{x_{n}\right\}$ converges to 0 , and so every subsequence of $\left\{x_{n}\right\}$ converges to 0 as well. Since $0 \notin E$, this finishes the argument.
(f) No, there are open covers of E that have no finite subcovers. For example, consider the collection

$$
\begin{aligned}
\mathcal{U}=\{(-\sqrt{2}+1,0), & (-\sqrt{2}+1 / 2,-\sqrt{2}+1),(-\sqrt{2}+1 / 3,-\sqrt{2}+1 / 2) \\
& (-\sqrt{2}+1 / 4,-\sqrt{2}+1 / 3),(-\sqrt{2}+1 / 5,-\sqrt{2}+1 / 4) \ldots\}
\end{aligned}
$$

The union of all the sets in \mathcal{U} is

$$
\bigcup_{n=1}^{\infty}\left(-\sqrt{2}+\frac{1}{n+1},-\sqrt{2}+\frac{1}{n}\right) \cup(-\sqrt{2}+1,0)
$$

which covers everything in the interval $(-\sqrt{2}, 0)$ except for the irrational numbers of the form $-\sqrt{2}+\frac{1}{n}$; in particular, \mathcal{U} is a cover of E. Distinct sets in \mathcal{U} have disjoint intersection, yet every set in \mathcal{U} contains a point in E, so any subcover (i.e., any cover of E consisting of intervals in \mathcal{U}) is necessarily all of \mathcal{U}. Since \mathcal{U} is infinite, this implies every subcover of \mathcal{U} is infinite.

