Mathematics 3A03 Real Analysis I 2017 ASSIGNMENT 3

This assignment is due in the appropriate locker on Friday 20 Oct 2017 at 4:25pm.

1. Suppose $\{a_n\}$ and $\{b_n\}$ are sequences with $0 \leq a_n \leq b_n$ for all n. Consider the sequences

$$s_n = \sum_{k=1}^n a_k, \qquad \qquad t_n = \sum_{k=1}^n b_k$$

of partial sums. Show that if $\{t_n\}$ converges, then $\{s_n\}$ converges. *Hint: Use the* Monotone Convergence Theorem.

- 2. (a) Let $r \in \mathbb{R}$ with $r \neq 1$. Show that $\sum_{k=0}^{\ell-1} r^k = \frac{1-r^{\ell}}{1-r}$ for all $\ell \geq 1$. Conclude that if $0 \leq r < 1$, then $\sum_{k=0}^{\ell-1} r^k \leq \frac{1}{1-r}$ for all $\ell \geq 1$.
 - (b) Suppose $\{x_n\}$ is a sequence satisfying $|x_n x_{n+1}| < 2^{-n}$ for all n. Show that $\{x_n\}$ converges. *Hint: Use the Cauchy criterion. Show that* $|x_{n+\ell} x_n| \le 2^{-n} \sum_{k=0}^{\ell-1} 2^{-k}$ and then simplify this using (a).
- 3. (a) Suppose A and B are countable sets. Show that the union $A \cup B$ is countable. Hint: First consider the case where A and B are disjoint $(A \cap B = \emptyset)$.
 - (b) Suppose S is a countable set. Show that for each $n \ge 2$, the *n*-fold Cartesian product S^n is countable.
 - (c) Consider the set

 $P(\mathbb{N}) := \{ f \mid f \text{ is a function of the form } f : \mathbb{N} \to \{0, 1\} \}$

consisting of all functions from \mathbb{N} to $\{0,1\}$. Prove that $P(\mathbb{N})$ is uncountable.

- 4. Let $E = \{x \in \mathbb{Q} \mid -\sqrt{2} < x < 0\}.$
 - (a) Find the closure of E in \mathbb{R} .
 - (b) Is E closed?
 - (c) Find the interior of E in \mathbb{R} .
 - (d) Is E open?
 - (e) (Bolzano-Weierstrass Property) Does every sequence of points in E have a subsequence that converges to a point in E? If so, prove it. Otherwise, construct a sequence with no subsequence converging in E.
 - (f) (Heine-Borel Property) Does every open cover of E have a finite subcover? If so, prove it. Otherwise, construct an open cover that has no finite subcover.