
Mathematics 3A01 Real Analysis I

2017 ASSIGNMENT 2

This assignment is due in the appropriate locker on Friday 29 Sep 2017 at 4:25pm.

1. Use the principle of mathematical induction to prove that for any n ∈ N,

(a)
n∑

k=0

2k = 2n+1 − 1;

Solution: We first verify the base case (n = 1):
∑1

k=0 2k = 1 + 2 = 21+1 − 1.

Next we assume the proposition is true for some n ≥ 1 and prove that it is true
for n + 1:

n+1∑
k=0

2k =

(
n∑

k=0

2k

)
+ 2n+1 =

(
2n+1 − 1

)︸ ︷︷ ︸
By induction
hypothesis

+ 2n+1 = 2 · 2n+1 − 1 = 2n+2 − 1,

as required.

(b) if the integers x1, . . . , xn are odd then their product x1x2 · · · xn is odd.
Hint: Start with n = 2.

Solution: We first check the base case (n = 2): Suppose x and y are odd integers,
i.e., ∃k, ` ∈ Z such that x = 2k + 1 and y = 2` + 1. Then xy = (2k + 1)(2` + 1) =
4k` + 2k + 2` + 1 = 2(2k` + k + `) + 1, which is odd.

Now suppose that the product of any n odd integers is odd. Consider n + 1
odd integers, x1, x2, . . . , xn, xn+1. By our induction hypothesis, the product x∗ =
x1x2 · · ·xn is odd and, therefore, by our analysis of the base case, we have x∗xn+1 =
x1x2 · · ·xnxn+1 is odd.

2. Use the formal definition of a limit of a sequence to prove that

(a) lim
n→∞

(−1)n

n3
= 0 ;

Solution: Given ε > 0 we must find N ∈ N such that |(−1)n/n3| < ε for all
n ≥ N . Note that∣∣∣∣(−1)n

n3

∣∣∣∣ < ε ⇐⇒ 1

n3
< ε ⇐⇒ n3 >

1

ε
⇐⇒ n >

1

ε1/3
.

We’ve now discovered what we need to construct a formal proof:

Proof. Given ε > 0, let N =
⌈
ε−1/3

⌉
. Then

n ≥ N =⇒ n ≥
⌈
ε−1/3

⌉
≥ ε−1/3 =⇒ n3 ≥ 1

ε
=⇒ 1

n3
< ε =⇒

∣∣∣∣(−1)n

n3

∣∣∣∣ < ε

as required
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(b) lim
n→∞

n2 − 1

n2 + 1
= 1 .

Solution: Given ε > 0 we must find N ∈ N such that for all n ≥ N ,∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ < ε .

Note that for any n ∈ N,

n2 − 1

n2 + 1
− 1 =

n2 − 1 + 1− 1

n2 + 1
− 1 =

n2 + 1

n2 + 1
− 2

n2 + 1
− 1 = − 2

n2 + 1
,

so it is equivalent to show 2/(n2 + 1) < ε, i.e., n >
√

(2/ε)− 1 (provided ε < 2,
which we can assume without loss of generality). Now we’re ready to write our
formal proof:

Proof. Let ε > 0. First consider the case where ε < 2. In this case, set N =⌈√
(2/ε)− 1

⌉
+ 1. Then

n ≥ N =⇒ n >
⌈√

(2/ε)− 1
⌉
≥
√

(2/ε)− 1 =⇒ n2 + 1 >
2

ε
=⇒ 2

n2 + 1
< ε

=⇒
∣∣∣∣− 2

n2 + 1

∣∣∣∣ < ε =⇒
∣∣∣∣n2 + 1

n2 + 1
− 2

n2 + 1
− 1

∣∣∣∣ < ε

=⇒
∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ < ε ,

as required.

Now assume ε ≥ 2. By the above, there is some N ∈ N so that∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ < 1

for all n ≥ N . Since 1 ≤ ε, this finishes the proof in this case as well.

3. Use the formal definition to prove that the following sequences {sn} diverge as n→∞.

(a) sn = (−r)n (for any r ≥ 1) ;

Solution: Suppose L ∈ R. If L ≤ 0 then note that for all n ∈ N, |s2n − L| =
|r2n − L| = |r2n + |L|| = r2n + |L| > r2n ≥ 1. Similarly, if L > 0 then ∀n ∈ N,
|s2n+1 − L| = |−r2n+1 − L| = |r2n+1 + L| > r2n+1 ≥ 1. Thus, for any L ∈ R, we
can find n ∈ N such that |sn − L| ≥ 1, implying {sn} does not converge to L.

(b) sn =
n!

2n
.

Solution: Note that for n > 4 we have

sn =
n

2
· n− 1

2
· · · 4

2
· 3

2
· 2

2
· 1

2

=

(
n

2
· n− 1

2
· · · 5

2

)
· 4

2
· 3

2
· 2

2
· 1

2

>

(
4

2

)n−4
4

2
· 3

2
· 2

2
· 1

2
= 2n−424

16
= 2n−43

2
> 2n−4 > n− 4 .

Page 2 of 4



(To be complete, we should really prove by induction that sn > n−4 for all n > 4,
but we’ll leave that as an exercise.) Now, given M > 0, choose N = dMe + 5.
Then ∀n ≥ N , sn > n− 4 ≥ N − 4 = dMe+ 1 > M , as required.

4. Suppose sn → 0 as n→∞ and that sn > 0 for at least one n ∈ N. Prove that the set
{sn} has a maximum value.

Solution: Choose k ∈ N such that sk > 0. Since {sn} converges, it is bounded above,
say by M ≥ sk. Since {sn} actually converges to 0, choose N ∈ N such that ∀n ≥ N ,
sn < sk. Now consider the finite set of real numbers {s1, s2, . . . , sN}, which has a
maximum, say s`. We then have s` ≥ sk > sn for all n ≥ N , so s` ≥ sn for all n ∈ N,
i.e., s` is, in fact, the maximum of the entire sequence.

5. Prove that if lim
n→∞

sn = L then lim
n→∞

1

n

n∑
k=1

sk = L.

Solution: Given ε > 0, we can choose N ∈ N such that ∀n ≥ N , |sn − L| < ε. If we
write this out for a few terms with n ≥ N , we have

−ε < sN − L < ε

−ε < sN+1 − L < ε

−ε < sN+2 − L < ε

If we add these and divide by 3 we have

−ε < 1

3

N+2∑
k=N

sk − L < ε .

If we could take N = 1 then we’d be done, but that’s not possible in general. Instead
we need to find a way to argue that the first N terms are negligible in the sum in the
limit. If we make the upper limit of the sum sufficiently large, this should do the trick.
Hopefully these comments are sufficient to motivate the following.

Proof. Given ε > 0, choose N1 ∈ N such that ∀n ≥ N1, |sn − L| < ε
2
, i.e.,

∀n ≥ N1, −ε

2
< sn − L <

ε

2
.

In addition, since sn converges, it is bounded, i.e., ∃m,M ∈ R such that m < sn < M
for all n ∈ N, i.e.,

∀n ≥ 1, m− L < sn − L < M − L .
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Now for any n > N1 consider the finite sequence of inequalities

m− L < s1 − L < M − L

m− L < s2 − L < M − L

...

m− L < sN1 − L < M − L

−ε

2
< sN1+1 − L <

ε

2
...

−ε

2
< sn − L <

ε

2

and take their sum to obtain

N1(m− L)− (n−N1)
ε

2
<

n∑
k=1

sk − nL < N1(M − L) + (n−N1)
ε

2
.

Dividing by n we have

N1

n
(m− L)− n−N1

n

ε

2
<

1

n

n∑
k=1

sk − L <
N1

n
(M − L) +

n−N1

n

ε

2
.

Since n > N1, it follows that

N1

n
(m− L)− ε

2
<

1

n

n∑
k=1

sk − L <
N1

n
(M − L) +

ε

2
.

Now choose N2 ∈ N, with N2 > N1, such that

−ε

2
< (m− L)

N1

N2

≤ 0 ≤ (M − L)
N1

N2

<
ε

2
,

which can be done, for example, by taking

N2 = max

{⌈
2N1(L−m)

ε

⌉
,

⌈
2N1(M − L)

ε

⌉
, N1 + 1

}
.

Then, for all n ≥ N2, we have

−ε

2
− ε

2
<

1

n

n∑
k=1

sk − L <
ε

2
+

ε

2
,

i.e.,

∀n ≥ N2,

∣∣∣∣∣ 1n
n∑

k=1

sk − L

∣∣∣∣∣ < ε ,

as required.
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