Mathematics 3A01 Real Analysis I 2017 ASSIGNMENT 2

This assignment is due in the appropriate locker on Friday 29 Sep 2017 at 4:25pm.

1. Use the principle of mathematical induction to prove that for any $n \in \mathbb{N}$,

(a)
$$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$$
;

- (b) if the integers x_1, \ldots, x_n are odd then their product $x_1 x_2 \cdots x_n$ is odd. *<u>Hint</u>:* Start with n = 2.
- 2. Use the formal definition of a limit of a sequence to prove that

(a)
$$\lim_{n \to \infty} \frac{(-1)^n}{n^3} = 0$$
;
(b) $\lim_{n \to \infty} \frac{n^2 - 1}{n^2 + 1} = 1$.

3. Use the formal definition to prove that the following sequences $\{s_n\}$ <u>diverge</u> as $n \to \infty$.

(a)
$$s_n = (-r)^n$$
 (for any $r \ge 1$);
(b) $s_n = \frac{n!}{2^n}$.

- 4. Suppose $s_n \to 0$ as $n \to \infty$ and that $s_n > 0$ for at least one $n \in \mathbb{N}$. Prove that the set $\{s_n\}$ has a maximum value.
- 5. Prove that if $\lim_{n \to \infty} s_n = L$ then $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n s_k = L$.