Mathematics 3A01 Real Analysis I 2017 ASSIGNMENT 2

This assignment is due in the appropriate locker on Friday 29 Sep 2017 at 4:25pm.

1. Use the principle of mathematical induction to prove that for any $n \in \mathbb{N}$,
(a) $\sum_{k=0}^{n} 2^{k}=2^{n+1}-1$;
(b) if the integers x_{1}, \ldots, x_{n} are odd then their product $x_{1} x_{2} \cdots x_{n}$ is odd. Hint: Start with $n=2$.
2. Use the formal definition of a limit of a sequence to prove that
(a) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n^{3}}=0$;
(b) $\lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}+1}=1$.
3. Use the formal definition to prove that the following sequences $\left\{s_{n}\right\}$ diverge as $n \rightarrow \infty$.
(a) $s_{n}=(-r)^{n} \quad($ for any $r \geq 1)$;
(b) $s_{n}=\frac{n!}{2^{n}}$.
4. Suppose $s_{n} \rightarrow 0$ as $n \rightarrow \infty$ and that $s_{n}>0$ for at least one $n \in \mathbb{N}$. Prove that the set $\left\{s_{n}\right\}$ has a maximum value.
5. Prove that if $\lim _{n \rightarrow \infty} s_{n}=L$ then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} s_{k}=L$.
