
Mathematics 3A03 Real Analysis I

2017 ASSIGNMENT 1 (Solutions)

This assignment was due in the appropriate locker on Friday 15 Sep 2017 at
4:25pm.

1. Prove that −2
√

2 + 3 is irrational.

Proof: We will prove this by contradiction. If −2
√

2 + 3 were rational, then we could
write

−2
√

2 + 3 =
m

n

for some integers m,n with n 6= 0. This implies

−2
√

2 =
m− 3n

n

and so √
2 =

3n−m
2n

. (1)

We know that the difference and product of integers is again an integer. Hence 3n−m
and 2n are both in Z. Moreover, n 6= 0 implies 2n 6= 0. It follows that 3n−m

2n
∈ Q is

rational. Then Equation (??) implies that
√

2 is rational. But we saw in class that
√

2
is not rational, so this is a contradiction.

2. Define Z4 to consist of the set {0, 1, 2, 3}, together with addition + and multiplication
· defined by the following two tables.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Is Z4 a field? Justify your answer.

No, Z4 is not a field since it fails the multiplicative inverses axiom (Axiom M4 from
the slides). More specifically, the element 2 has no multiplicative inverse in Z4. Before
proving this, we need to first figure out what the multiplicative identity is, since the
multiplicative identity shows up in the statement of Axiom M4. A quick look at the “1
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column” of the multiplication table shows that 1x = x for all x ∈ Z4. This is precisely
what it means for 1 to be the multiplicative identity (see Axiom M3).

Now we will prove that 2 has no multiplicative inverse in Z4; that is, we will show that
2y 6= 1 for all y ∈ Z4 (this is where we use the fact that 1 is the multiplicative identity).
We see from the “2 column” of the multiplication table that if y ∈ Z4, then 2y = 0 or
2y = 2. Since 0 6= 1 and 2 6= 1, we deduce that 2y 6= 1 for all y ∈ Z4, as desired.

(As a side note, Axiom M4 is the only field axiom that Z4 fails to satisfy.)

3. For each of the following sets, find the greatest lower bound (inf), least upper bound
(sup), minimum (min) and maximum (max), if they exist. If any of these do not exist,
then indicate accordingly. Justify your assertions.

(a) (−∞, 2].

(b) {x : x ∈ R and |x| < 3}.
(c) {n+1

n
: n ∈ N}.

(a) The infimum of (−∞, 2] does not exist, since there is no lower bound (that said,
some people write inf(−∞, 2] = −∞ as a shorthand to indicate that there is no lower
bound, so −∞ is also an acceptable answer). To prove that there is no lower bound,
we need to show that, for every m ∈ R, there is some x ∈ (−∞, 2] such that x < m;
indeed, given m, define x by setting x = m− 1.

Since the infimum does not exist, the minimum does not exist either.1 The maximum
is 2 since 2 ∈ (−∞, 2] and x ≤ 2 for all x ∈ (−∞, 2]. The supremum is also 2 since,
whenever the maximum exists, the supremum exists and equals the maximum.

(b) Note that {x : x ∈ R and |x| < 3} = (−3, 3). First we will show that

sup(−3, 3) = 3. (2)

To see this, note that x < 3 for all x ∈ (−3, 3). Thus, the non-empty set (−3, 3) is
bounded above by 3. It follows that the supremum exists and sup(−3, 3) ≤ 3. To
finish the proof of (??), we need to show that 3 is the least upper bound. Toward this
end, assume x is another upper bound for (−3, 3). We will have established (??) if
we can show 3 ≤ x. Working by contradiction, assume 3 > x. Note that the interval
(0, 3 − x) is nonempty, and so the intersection (0, 3 − x) ∩ (0, 3) is nonempty as well.
Let ε ∈ (0, 3 − x) ∩ (0, 3) be any number in this intersection. Since ε ∈ (0, 3 − x), it
follows that ε < 3− x and hence

3− ε > x. (3)

On the other hand, since ε ∈ (0, 3), we have 3− ε ∈ (−3, 3). We have assumed that x
is an upper bound for (−3, 3). This implies 3− ε ≤ x, which is a contradiction to (??).

1However, −∞ is not an acceptable answer for the minimum. The property motivating this convention
is that we always require that the minimum is contained in the set being considered.
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Our initial assumption that 3 > x must be false, so we can conclude that 3 is, in fact,
the supremum of (−3, 3).

The set (−3, 3) has no maximum. Indeed, if a maximum exists, then it would have to
be the supremum, which is 3, but 3 /∈ (−3, 3).

Similar arguments show that the inf is −3 and the min does not exist.

(c) Write n+1
n

= 1 + 1
n

for some n ∈ N. Note that n ≥ 1, so we have 0 < 1
n
≤ 1, which

gives

1 < 1 +
1

n
≤ 2.

It follows that the supremum and infimum exist and

1 ≤ inf
{n+ 1

n
: n ∈ N

}
≤ sup

{n+ 1

n
: n ∈ N

}
≤ 2.

Note that if n = 1, then 1 + 1
n

= 2. It follows that the value 2 is obtained in the set,
so 2 is the maximum. Consequently, 2 must also be the supremum:

max
{n+ 1

n
: n ∈ N

}
= sup

{n+ 1

n
: n ∈ N

}
= 2.

Next we will show that the infimum is 1. To see this, suppose x is a lower bound for
the set; we need to show that 1 ≥ x. If 1 < x, then 0 < x− 1, so by the Archimedean
property, we can find some natural number n with 1

n
< x− 1. Then

n+ 1

n
= 1 +

1

n
< x.

This contradicts the assumption that x is a lower bound, so 1 ≥ x as desired.

Finally, the minimum does not exist, since if it did it would have to be 1 (the greatest
lower bound), but 1 /∈ {n+1

n
: n ∈ N}.

4. Suppose S, T ⊆ R are bounded, nonempty sets with S ⊆ T . Find relations between
supS, supT, inf S and inf T . Justify your assertions.

Since both sets are bounded and nonempty, their suprema and infima exist. We claim
that

inf T ≤ inf S ≤ supS ≤ supT.

Note that we automatically have inf S ≤ supS, so to prove the claim, it suffices to show
inf T ≤ inf S and supS ≤ supT . We will prove the former; the latter is similar. To
see that inf T ≤ inf S, note that since inf T is a lower bound for T , we have x ≥ inf T
for all x ∈ T . Since S ⊆ T , this implies

x ≥ inf T,∀x ∈ S.

It follows that inf T is a lower bound for S. Since inf S is the greatest lower bound, we
immediately conclude

inf T ≤ inf S,

as desired.
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5. Let x, y ∈ R. Prove that x = y if and only if |x− y| < ε for every ε > 0.

Proof: First suppose x = y. It follows that |x− y| = 0. Then if ε > 0, we have

|x− y| = 0 < ε

as desired.

Now we will prove the converse. Note that it is equivalent to prove that if x 6= y, then
there is some ε > 0 with |x − y| ≥ ε. To show this, suppose x 6= y. Then x − y 6= 0
and so |x− y| > 0. Take ε = |x− y|/2. Then ε > 0 and

|x− y| ≥ ε.

6. Let x1, x2 ∈ R be real numbers with x1 < x2. Show that if y ∈ (x1, x2), then there are
rational numbers r1, r2 ∈ Q with y ∈ (r1, r2) and (r1, r2) ⊆ (x1, x2).

Proof: Fix y ∈ (x1, x2). Then y < x2. Since the rational numbers are dense, there is
some rational number r2 with y < r2 < x2. Similarly, there is some rational number r1
with x1 < r1 < y. Then r1 < y < r2 implies y ∈ (r1, r2), while the inequalities r2 < x2
and x1 < r1 imply (r1, r2) ⊆ (x1, x2).
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