
Mathematics 3A03 Real Analysis I

2016 ASSIGNMENT 6

SOLUTIONS

This assignment is due in the appropriate locker on Wed 7 Dec 2016 at 2:25pm.

1. Let f be integrable on [a, b], let c ∈ (a, b), and let

F (x) =

∫ x

a

f , a ≤ x ≤ b.

For each of the following statements, give either a proof or a counterexample.

(a) If f is differentiable at c, then F is differentiable at c.

Solution: f differentiable at c =⇒ f continuous at c =⇒ F differentiable
at c.

(b) If f is differentiable at c, then F ′ is continuous at c.

Solution: If f is continuous in a neighbourhood of c then F ′ is continuous in
that neighbourhood (since F ′ = f), so in particular we would have F ′ continuous
at c. However, we cannot assume that f is continuous anywhere except at c itself
(where it is differentiable). In general, F ′ need not even exist anywhere but at c
itself (recall the trapping principle from Assignment 5, problem 4).

(c) If f ′ is continuous at c, then F ′ is differentiable at c.

Solution: f ′ continuous at c =⇒ f ′ exists in a neighbourhood of c =⇒
f is continuous in a neighbourhood of c =⇒ F ′ = f is continuous in that
neighbourhood. Moreover, since f ′ exists at c, F ′ is differentiable at c.

2. The improper integral

∫ a

−∞
f is defined in the obvious way, as

lim
N→−∞

∫ a

N

f .

But another kind of improper integral

∫ ∞
−∞

f is defined in an unobvious way: it is

∫ 0

−∞
f +

∫ ∞
0

f ,

provided these improper integrals both exist.
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(a) Explain why

∫ ∞
−∞

1

1 + x2
dx exists.

Solution: From the Fundamental Theorem of Calculus, we have∫ N

0

1

1 + x2
dx = arctanN , for all N ∈ R.

In addition, for all N ∈ R,∫ 0

−N

1

1 + x2
dx = −

∫ −N
0

1

1 + x2
dx = − arctan (−N) = arctanN .

Now, since arctan is strictly increasing and bounded on R, limN→∞ arctanN exists,
so
∫∞
−∞

1
1+x2

dx = 2 limN→∞ arctanN exists (and in fact equals 2 · π
2

= π).

If the above argument makes you feel uncomfortable, that’s good, because it uses
facts that are perhaps familiar but were not specifically derived in this course. A
better approach is to let aN =

∫ N
0

1
1+x2

dx for each N ∈ N, and note that aN is an
increasing sequence and

aN ≤
N∑
n=1

1

1 + (n− 1)2
≤ 1 +

N∑
n=2

1

(n− 1)2
= 1 +

N∑
n=1

1

n2

(consider upper sums with the partition {0, 1, 2, . . . , N}). Since aN is a bounded
monotone sequence, it converges (by the monotone convergence theorem). Noting

that aN is also equal to
∫ 0

−N
1

1+x2
dx, we are done.

Because the question said simply “explain” rather than “prove”, you might have
thought it was sufficient to say something like “it converges because each of the
two components converges”.

Remark: If you want an extra challenge, try to prove that limN→∞ aN = 1 + π2

6
.

(b) Explain why

∫ ∞
−∞

x dx does not exist, but lim
N→∞

∫ N

−N
x dx does exist.

Solution: The former is the sum of two divergent integrals, whereas the latter is
0 for all N .

(c) Prove that if

∫ ∞
−∞

f exists, then lim
N→∞

∫ N

−N
f exists and equals

∫ ∞
−∞

f . Show, more-

over, that lim
N→∞

∫ N+1

−N
f and lim

N→∞

∫ N

−N2

f both exist and equal

∫ ∞
−∞

f .

Can you state a reasonable generalization of these facts? (If you can’t, you will
have a miserable time trying to do these special cases!)

Solution: If

∫ ∞
−∞

f exists, then by definition each of

∫ 0

−∞
f and

∫ ∞
0

f must exist,

which means lim
N→∞

∫ 0

−N
f and lim

N→∞

∫ N

0

f both exist. Therefore,

lim
N→∞

∫ N

−N
f = lim

N→∞

(∫ 0

−N
f +

∫ N

0

f

)
= lim

N→∞

∫ 0

−N
f+ lim

N→∞

∫ N

0

f =

∫ 0

−∞
f+

∫ ∞
0

f =

∫ ∞
−∞

f
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More generally, if M(N) is an increasing function of N and M(N) → ∞ as
N → ∞ then for any function g(x) that converges to a limit at x → ∞, we have
limN→∞ g(N) = limN→∞ g

(
M(N)

)
. In particular, this is true for g(x) =

∫ x
0
f .

Remark: Intuitively, the issue here is that velocity along the real line is irrelevant
provided we never slow down. (In fact, temporary slowing down—or even reversing
direction—is OK provided M(N) is eventually non-decreasing and unbounded.)

3. Prove that |sinx− sin y| < |x− y| for all x, y ∈ R with x 6= y. Hint: The same
statement, with < replaced by ≤, is a straightforward consequence of a well-known
theorem; simple supplementary considerations then allow ≤ to be improved to <.

Solution: By the Mean Value Theorem, there exists ξ between x and y such that∣∣∣∣sinx− sin y

x− y

∣∣∣∣ = |cos ξ| .

and hence
|sinx− sin y| = |cos ξ| |x− y| (∗) .

Since |cos ξ| ≤ 1 for all ξ ∈ R, we have

|sinx− sin y| ≤ |x− y| .

Moreover, this inequality is strict unless ξ in equation (*) is such that |cos ξ| = 1, i.e.,
unless ξ = kπ for some k ∈ Z.

Suppose x < y. Choose any w ∈ (x, y) such that the interval (x,w) does not contain
kπ for any k ∈ Z. Then there exist ξ1 ∈ (x,w) and ξ2 ∈ (w, y) such that

sin y − sinx = (sin y − sinw) + (sinw − sinx)

= (cos ξ2)(y − w) + (cos ξ1)(w − x) .

Therefore, noting that x < w < y implies y − w > 0 and w − x > 0, we have

|sin y − sinx| = |(cos ξ2)(y − w) + (cos ξ1)(w − x)|
≤ |cos ξ2| (y − w) + |cos ξ1| (w − x) (triangle inequality)

≤ (y − w) + |cos ξ1| (w − x) (|cos ξ2| ≤ 1)

< (y − w) + (w − x) (|cos ξ1| < 1)

= y − x
= |y − x| .

The argument is similar if y < x.

4. For each of the following sequences {fn}, determine the pointwise limit of {fn} (if it
exists) on the indicated interval, and establish whether {fn} converges uniformly to
this function.
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(i) fn(x) = n
√
x, on [0, 1];

Solution: The pointwise limit is

f(x) = lim
n→∞

n
√
x =

{
0 x = 0,

1 0 < x ≤ 1,

which is not continuous. Therefore, the convergence is not uniform (if it were
then f(x) would be continuous). In the graph below, fn is shown in black for
n = 1, . . . , 10 and f is shown in red.

●

●

(ii) fn(x) =

{
0, x ≤ n,

x− n x ≥ n,
on [a, b] and on R;

Solution: The pointwise limit is f(x) = 0 for all x ∈ R. On any finite interval
[a, b] this convergence is uniform. Note that for such a finite interval, we can
find N ∈ N such that for all n ≥ N , fn(x) = 0 for all x ∈ [a, b]. However, the
convergence is not uniform on R since each fn is unbounded on R, yet f(x) is
bounded.

(iii) fn(x) =
ex

xn
, on (1,∞).

Solution: Note that the numerator does not depend on n. Consequently, for
any x > 1 we have the pointwise limit

f(x) = lim
n→∞

ex

xn
= ex lim

n→∞

1

xn
= 0 .

On the other hand, for any given n ∈ N we have

lim
x→∞

f(x) = lim
x→∞

ex

xn
=∞ ,

so every fn is unbounded. So, as in part (b), the convergence is not uniform.
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