Mathematics 3A03 Real Analysis I 2016 ASSIGNMENT 6

This assignment is due in the appropriate locker on Wed 7 Dec 2016 at 2:25pm.

1. Let f be integrable on [a, b], let $c \in (a, b)$, and let

$$F(x) = \int_{a}^{x} f, \quad a \le x \le b.$$

For each of the following statements, give either a proof or a counterexample.

- (a) If f is differentiable at c, then F is differentiable at c.
- (b) If f is differentiable at c, then F' is continuous at c.
- (c) If f' is continuous at c, then F' is differentiable at c.
- 2. The *improper integral* $\int_{-\infty}^{a} f$ is defined in the obvious way, as

$$\lim_{N \to -\infty} \int_{N}^{a} f.$$

But another kind of improper integral $\int_{-\infty}^{\infty} f$ is defined in an unobvious way: it is

$$\int_{-\infty}^{0} f + \int_{0}^{\infty} f \,,$$

provided these improper integrals both exist.

- (a) Explain why $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ exists.
- (b) Explain why $\int_{-\infty}^{\infty} x \, dx$ does <u>not</u> exist, but $\lim_{N \to \infty} \int_{-N}^{N} x \, dx$ <u>does</u> exist.
- (c) Prove that if $\int_{-\infty}^{\infty} f$ exists, then $\lim_{N\to\infty} \int_{-N}^{N} f$ exists and equals $\int_{-\infty}^{\infty} f$. Show, moreover, that $\lim_{N\to\infty} \int_{-N}^{N+1} f$ and $\lim_{N\to\infty} \int_{-N^2}^{N} f$ both exist and equal $\int_{-\infty}^{\infty} f$.

Can you state a reasonable generalization of these facts? (If you can't, you will have a miserable time trying to do these special cases!)

3. Prove that $|\sin x - \sin y| < |x - y|$ for all $x, y \in \mathbb{R}$ with $x \neq y$. Hint: The same statement, with < replaced by \leq , is a straightforward consequence of a well-known theorem; simple supplementary considerations then allow \leq to be improved to <.

- 4. For each of the following sequences $\{f_n\}$, determine the pointwise limit of $\{f_n\}$ (if it exists) on the indicated interval, and establish whether $\{f_n\}$ converges uniformly to this function.
 - (i) $f_n(x) = \sqrt[n]{x}$, on [0, 1];
 - (ii) $f_n(x) = \begin{cases} 0, & x \le n, \\ x n & x \ge n, \end{cases}$ on [a, b] and on \mathbb{R} ;
 - (iii) $f_n(x) = \frac{e^x}{x^n}$, on $(1, \infty)$.